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Abstract. Let k ≥ 2 be an integer and Fq be a finite field with q elements. We prove
several results on the distribution in short intervals of polynomials in Fq[x] that are not
divisible by the kth power of any non-constant polynomial. Our main result generalizes a
recent theorem by Carmon and Entin [1] on the distribution of squarefree polynomials to all
k ≥ 2. We also develop polynomial versions of the classical techniques used to study gaps
between k-free integers in Z. We apply these techniques to obtain analogues in Fq[x] of some
classical theorems on the distribution of k-free integers. The latter results complement the
main theorem in the case when the degrees of the polynomials are of moderate size.

1. Introduction

Recall that if k ≥ 2 is a fixed integer, an integer n is called k-free if n is not divisible by
the kth power of any prime. This is a generalization of the classical concept of a squarefree
integer, which occurs in the special case when k = 2. Much work has been done studying
the distribution of k-free integers in short intervals, especially in the squarefree case: see
[2–10, 12–15, 18, 21, 22, 24, 26–28]. In particular, Filaseta and Trifonov [8] proved that there
exists a constant c > 0 such that the interval (x, x+ cx1/5 ln x] contains a squarefree integer
for all sufficiently large x. Trifonov [28] further generalized this result to k-free integers for
all k ≥ 2. He showed that for some constant c = c(k) > 0, the interval (x, x+ cx1/(2k+1) ln x]
contains a k-free integer when x is sufficiently large. To the best of our knowledge, these are
the sharpest unconditional upper bounds on the maximum gap between consecutive k-free
numbers. Conditionally on the abc-conjecture, Granville [13] has shown that for any fixed
ε > 0, the interval (x, x+ xε] contains squarefree integers for sufficiently large x.

There are many parallels between the arithmetic of Z and that of Fq[x], the ring of polyno-
mials in x over a finite field Fq with q elements (see [19,23] for background on such research).
In particular, a polynomial in Fq[x] is called k-free if it has no irreducible factors of multi-
plicity k or higher; when k = 2, we call such a polynomial squarefree. One may expect to
find ample existing research on analogues for polynomials from Fq[x] of the aforementioned
research on the gap problem for k-free integers, but that does not appear to be the case.
Indeed, a search of the literature on the distribution in short intervals of k-free polynomials
over a finite field yields very limited results, almost entirely focused on the squarefree case.

Let q = pf , with p prime and f ∈ N, be the cardinality of a finite field Fq. Henceforth,
we restrict q to integers of this form. We let Mq denote the set of monic polynomials in
Fq[x] and write Mq(d) for the subset of monic polynomials of degree d. When F ∈ Mq and
h < degF , an interval in Fq[x] of length h centered at F is the set

Iq(F, h) = {Q ∈ Fq[x] : deg(F −Q) ≤ h} .
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In this paper, we study k-free polynomials in short intervals of this kind. To draw an
analogy with short intervals (x, x+ h] in Z, we observe that when F ∈ Mq(n), the “size” of
the polynomials in Iq(F, h) is qn, whereas the number of polynomials in the interval is qh+1.
In particular, the interval is “short” whenever 0 < h ≤ n− 2. Thus, a proper analogue of a
short interval (x, x + h], where x → ∞ and h = O(xθ), 0 < θ < 1, is an interval Iq(F, h),
where qn → ∞ and h ≤ θn.

Note that the condition qn → ∞ above can occur in different ways. For example, one
may fix n = deg(F ) and let q → ∞. In this regime, the question was studied by Keating
and Rudnick [17]. Drawing on earlier work by Rudnick [25] on the density of squarefree
polynomials over Fq, they showed that for any integers h, n with 0 < h ≤ n−2, one can take
q sufficiently large so that there exists a squarefree polynomial in every interval Iq(F, h),
with F ∈ Mq(n). The theorem of Keating and Rudnick does not quantify how fast q must
grow in terms of n, but an examination of their proof suggests that it can be made effective
to show that such a conclusion holds as long as q > c(n+ h) for some constant c.

In this paper, we focus on the case when q is fixed and n → ∞. The behavior of powerfree
polynomials in this regime turns out to be quite different, and the analogy with Z is more
direct. For example, in the case of gaps between squarefree integers, Erdős [2] proved long
ago that the maximum gap is unbounded: there are arbitrarily large x such that the interval
(x, x+ h] contains no squarefree integers when

h ≤ c ln x

ln ln x

for any constant c such that 2c < ζ(2). In §3, we establish a version of Erdős’ result for
polynomials over Fq. If ζq(s) = (1− q1−s)−1 denotes the zeta-function of the ring Fq[x] (see
[23, Ch. 2]), our result can be stated as follows.

Theorem 1. Let k ≥ 2 and q ≥ 2 be fixed integers, and suppose that c is any constant with
kc < ζq(k). If n is sufficiently large, there exist monic polynomials F of degree at most n
such that the interval Iq(F, h) contains no k-free polynomials for any length h such that

qh+1 ≤ cn

logq n
. (1)

In the squarefree case k = 2, this is a direct analogue of Erdős’ result, as stated by Erdős
in [3]. To the best of our knowledge, for k > 2, the corresponding result for integers has
never been formally stated, though it has been known to researchers in the field and can be
extracted from the remarks in [3].

We include Theorem 1 and its proof here, since it transpires that in the study of k-free
polynomials over Fq, the upper bounds on the least h (as n → ∞) for which Iq(F, h) must
contain a k-free polynomial come much closer to the lower barrier imposed by Theorem 1.
Recently, Carmon and Entin [1] have shown that when

qh+1 >

(
g(n)n

logq n

)p

, (2)

where g(n) → ∞ as n → ∞, one can obtain an asymptotic formula for the number of
squarefree polynomials in the interval Iq(F, h). They derive this result as a special case of a
theorem on the density of squarefree values of bivariate polynomials over Fq. In particular,
their proof is considerably more elaborate than is necessary for the application to the gap
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problem considered here. In the special case of interest, we developed a much simplified
variant of their method, which we present in §2.2; it yields a rather quick proof that when
n → ∞ and (2) holds with g(n) = 1, the interval Iq(F, h) contains (many) squarefree
polynomials. Then, in §4, we extend the method to k-free polynomials, for any k ≥ 2, and
establish the following result.

Theorem 2. Let k ≥ 2 and q ≥ 2 be fixed integers, and suppose that char(Fq) = p. Let
k = dpa + · · ·+ d1p+ d0, 0 ≤ d = da, . . . , d1, d0 < p, d ̸= 0, be the base-p representation of k.
If n is sufficiently large and F ∈ Mq(n), the interval Iq(F, h) contains a k-free polynomial
whenever

qh+1 >

(
n

logq n

)1/θ

, (3)

where θ = 1− (p− d+ 1)p−a−1.

Note that when k = 2, we have θ = p−1, and inequality (3) becomes (2) with g(n) = 1. In
general, θ is a non-decreasing function of k such that θ = (k − 1)p−1 when 2 ≤ k ≤ p, and

1− (d+ 1)(p− d+ 1)

pk
< θ ≤ 1− 1

k

when k > p. In particular, as k increases, the gap between the barrier imposed by (1) and
the hypothesis (3) of Theorem 2 shrinks, and our result gets closer to being best possible.

The method of proof of Theorem 2 can be adjusted to yield variants that are superior in
different ways. As stated, the theorem is close to the best result one can obtain from the
basic version of our method. This lets us avoid some technical details. However, as we note
at the end of §4, if one is interested in an asymptotic for the number of k-free polynomials
in Iq(F, h), similar to that in the original work of Carmon and Entin [1], one may obtain
such an asymptotic for n → ∞ at the cost of strengthening condition (3) to

qh+1 >

(
g(n)n

logq n

)1/θ

(4)

with g(n) → ∞. One can also relax hypothesis (3) to (4) with g(n) = c, where c is
any constant satisfying c > θζq(k)p

−a. As θζq(k)p
−a < 1, this is a slight improvement on

Theorem 2.
A notable feature of the modern results on gaps between k-free integers is that they can

be made fully explicit. For example, in recent joint work with McCormick, Scherr, and
Ziehr [18], the authors proved an explicit version of the theorem of Filaseta and Trifonov [8]:
the main result of [18] establishes that the interval (x, x + 11x1/5 ln x] contains a squarefree
integer for any x ≥ 2. The next theorem provides a model for such results for polynomials
over Fq. Note that—in contrast to Theorems 1, 2, and 5 and similar to the main result
of [18]—this theorem makes the restriction on the size of the degree n explicit.

Theorem 3. Let k ≥ 2 and q ≥ 3 be fixed integers. If n ≥ k + 1 and F ∈ Mq(n), the
interval Iq(F, h) contains a k-free polynomial for all h ≥ n/(k + 1).

When k = 2, this theorem corresponds to the classical result that the interval (x, x+x1/3]
contains a squarefree integer for all sufficiently large x. A slightly stronger version of this
was first proved by Davenport in 1951, but not published at the time; its elementary and
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rather elegant proof can be found in Halberstam’s survey [14]. While all the estimates in the
proof of Theorem 2 can be made fully explicit, thus allowing us to quantify the hypothesis
that “n is sufficiently large,” the method is not suited to yield non-trivial results when n and
h are as small as they can be in Theorem 3. See Table 1 for a comparison of the values of
h, n and q for which the results developed in this paper are applicable. We prove this result
using a variant for polynomials over finite fields of a differencing technique introduced by
Halberstam and Roth [15, 24] and later developed by Filaseta and Trifonov [6–8, 28]. The
proof of Theorem 3 requires only the most basic form of the differencing method. A slightly
more sophisticated version of those ideas yields the following result.
Theorem 4. Let k ≥ 2 and q ≥ 7 be fixed integers such that char(Fq) ∤ (k+1). If n ≥ k+1
and F ∈ Mq(n), the interval Iq(F, h) contains a k-free polynomial for all h ≥ n/(k + 2).
Moreover, the same conclusion holds when k ≥ 3 and q ≥ 5.

In the case k = 2, this result matches a theorem due to Roth [24] (after some modification
by Nair [20]) that the interval (x, x + cx1/4] contains a squarefree integer for some absolute
constant c > 0. When k ≥ 3, however, Theorem 4 falls short of matching the theorem of
Halberstam and Roth [15] that, for any fixed ε > 0, the interval (x, x + x1/(2k)+ε] contains
k-free integers when x is sufficiently large. The next theorem accomplishes this.
Theorem 5. Let k ≥ 3 and q ≥ 3 be fixed integers such that char(Fq) ∤ k

(
2k−1
k−1

)
. If n is

sufficiently large and F ∈ Mq(n), then the interval Iq(F, h) contains a k-free polynomial for
all h ≥ n/(2k).

While this theorem matches the Halberstam–Roth result in terms of the sizes of the
intervals, it is much weaker than Theorem 2 (and, unlike Theorem 4, it says nothing about
polynomials of small degrees). On the other hand, its proof adapts the method used by
Halberstam and Roth in their seminal paper [15] (as presented in [6]). It also demonstrates
how one may develop further the ideas behind Theorems 3 and 4. In the integer setting, it is
more advanced versions of those ideas that yield the best results by Filaseta and Trifonov on
gaps between k-free integers. Indeed, Filaseta and Trifonov (see [6,9]) have used those ideas
to make progress in other problems, and it is conceivable that further applications may exist
in the function field setting too. For these reasons, it seems that the proof of Theorem 5 is
of independent interest (even though the result itself is superseded by Theorem 2), and so
it appears as an appendix to this paper.1

The remainder of the paper is organized as follows. In §2, we present the basic setup for
the proofs and gather some preliminary facts about polynomials over finite fields. We also
present present the proofs of Theorem 2 for k = 2 and of Theorem 3 in the case when k is
not divisible by the characteristic. In §3, we establish Theorem 1. The proof of Theorem 2
in the general case appears in §4. In §5, we develop polynomial analogues of the basic form
of the methods used by Filaseta and Trifonov in their work on the gap problem for k-free
integers: see Propositions 1 and 2 below. We then apply those results to prove Theorems 3
and 4. Finally, as noted earlier, the appendix contains the proof of Theorem 5, including
our version of the Halberstam–Roth method (see Proposition 3).

1It is possible to generalize the improvements of Filaseta and Trifonov to the polynomial setting as well.
These methods can be used to show that the interval Iq(F, h) contains a squarefree polynomial for all
h ≥ n/5 + logq n when n is sufficiently large and p > 3. This result is strictly weaker than Theorem 2 and
the proof substantially more involved, so we will not pursue it further here.
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Notation. Throughout the paper, the finite field Fq is considered fixed, and we use p to
denote its characteristic (so that, q = pf for some f ∈ N). Beside the sets of monic poly-
nomials Mq and Mq(d), we use Pq to denote the set of monic irreducible polynomials and
Pq(d) the set of monic irreducible polynomials of degree d. We write πq(d) = |Pq(d)| for the
number of monic irreducible polynomials of degree d in Fq[x]; in general, |A| denotes the
cardinality of a finite set A.

2. Preliminaries

Fix an integer k ≥ 2. Our strategy to prove the existence of k-free polynomials in an
interval Iq(F, h) will be to bound from above the number Nq(F, h) of polynomials in Iq(F, h)
that are not k-free and to show that

Nq(F, h) < |Iq(F, h)| = qh+1. (5)

Since every polynomial that is not k-free is divisible by the kth power of some monic irre-
ducible polynomial (and the kth power of a polynomial of degree greater than n/k cannot
divide any polynomial in Iq(F, h)), we find that

Nq(F, h) ≤
∑
P∈Pq

|{Q ∈ Iq(F, h) : P
k | Q}|

=
∑
d≤n/k

∑
P∈Pq(d)

|{Q ∈ Iq(F, h) : P
k | Q}|.

(6)

It will be useful to recall how many polynomials in Iq(F, h) are divisible by a fixed poly-
nomial G.

Lemma 1. Suppose G ∈ Mq(d). Then either Iq(F, h) contains no multiple of G, or

|{Q ∈ Iq(F, h) : G | Q}| =

{
qh−d+1 if d ≤ h,

1 if d > h.
(7)

Proof. Suppose that GA ∈ Iq(F, h) for some polynomial A ∈ Mq. When d > h, the interval
can contain no other multiples of G; and when d ≤ h, we need to count the polynomials
GB, with B ∈ Iq(A, h− d). □

The above lemma suffices to estimate the contribution to the right side of (6) from irre-
ducible polynomials P of degrees d ≤ ℓ, when ℓ is not much larger than h. We have∑

d≤ℓ

∑
P∈Pq(d)

|{Q ∈ Iq(F, h) : P
k | Q}| ≤

∑
d≤h/k

πq(d)q
h−kd+1 +

∑
h/k<d≤ℓ

πq(d) =: Σ1 + Σ2. (8)

To bound Σ1, Σ2, and other similar sums below, we will use some well-known bounds for
πq(d), which we state in the next lemma. The first claim of this lemma can be found in
[19, Corollary 3.21], and the second claim is an immediate consequence of the first.

Lemma 2. For any natural number n, one has∑
d|n

dπq(d) = qn and πq(n) ≤
qn

n
.
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Suppose that k ≤ h. Using this lemma, we find that

Σ1 ≤
∑
d≤h/k

qh+1

dq(k−1)d
< qh+1 ln

(
1

1− q1−k

)
= qh+1 ln ζq(k), (9)

and (assuming that ℓ ≥ h)

Σ2 ≤
∑

h/k<d≤ℓ

qd

d
<

qℓ

ℓ
+

k

h

∞∑
j=0

qℓ−1−j ≤ qℓ

h
+

kqℓ

(q − 1)h
=

(q + kh − 1)qℓ

(q − 1)h
, (10)

where kh := min(k, h). When k > h, the sum Σ1 is empty, while Σ2 satisfies the same bound,
after a small adjustment to its proof:

Σ2 ≤
∑
d≤ℓ

qd

d
<

qℓ

h
+

qℓ

(q − 1)
=

(q + kh − 1)qℓ

(q − 1)h
.

2.1. The classical approach. Returning to the contribution to the right side of (6) from
degrees d > h, we may apply Lemma 1 to show that when h < d ≤ n/k, we have∑

P∈Pq(d)

|{Q ∈ Iq(F, h) : P
k | Q}| ≤ |Sq(d)|, (11)

where
Sq(d) =

{
G ∈ Mq(d) : G

kA ∈ Iq(F, h) for some A ∈ Mq

}
. (12)

The shift of focus from the polynomials in Iq(F, h) to their kth-power divisors that occurs
in inequality (11) is an Fq[x]-variant of the basic idea at the core of the proofs of most bounds
on gaps between k-free integers mentioned in the introduction. In later sections, we prove
several results about the “spacing” between polynomials divisible by kth powers as measured
by the degrees of the differences between their kth-power factors. Such spacing results lead
to upper bounds on |Sq(d)| through the following lemma.

Lemma 3. Let S ⊆ Mq(d), and suppose that κ, δ ∈ R+, δ ≤ d, have the following property:
for any fixed polynomial G ∈ S, there exist at most κ polynomials H ∈ S such that deg(G−
H) < δ. Then

|S| ≤ κqd−δ.

Proof. Choose k ∈ N so that k − 1 < δ ≤ k. The intervals Iq(x
kY (x), k − 1), with

Y ∈ Mq(d−k), form a partition of Mq(d). Let I be one such interval, and fix a polynomial
G ∈ S∩I. Since any two elements G,H of S∩I must satisfy deg(G−H) < δ, by hypothesis,
there are at most κ possible polynomials H ∈ S ∩ I, including G itself. Thus,

|S ∩ I| ≤ κ.

Summing this estimate over all qd−k ≤ qd−δ intervals I of the above form, we get the desired
bound. □

For example, in Section 5, we will show that when p ∤ k—and so Proposition 1 holds with
r = 1, any two distinct polynomials G,H ∈ Sq(d) satisfy deg(G−H) ≥ (k+ 1)d− n. Thus,
when d > n/(k + 1), we may apply the above lemma with κ = 1 and δ = (k + 1)d − n to
obtain

|Sq(d)| ≤ qn−kd. (13)
6



This bound suffices to give a quick proof of Theorem 3 in the case when k is not divisible by
the characteristic. The proof in the case p | k will appear in Section 5.
Proof of Theorem 3: The case p ∤ k. When h ≥ n/(k + 1), the condition d > h implies d ≥
(n+ 1)/(k + 1). So, we may apply (13) to all d in the range h < d ≤ n/k to get∑

h<d≤n/k

|Sq(d)| ≤
∑

h<d≤n/k

qn−kd < qn−k(n+1)/(k+1)
∑
j≥0

q−kj =
q(n+k2)/(k+1)

qk − 1
≤ qh+1+1/(k+1)

q2 − q2−k
.

Combining this bound with (6) and (8)–(11) with ℓ = h, we find that

Nq(F, h) ≤ qh+1

(
ln ζq(k) +

q + kh − 1

q(q − 1)h
+

q1/(k+1)

q2 − q2−k

)
. (14)

When k = 2, this establishes (5) when q ≥ 5 and h ≥ 1 or when q = 3 and h ≥ 2.
Similarly, when k ≥ 3, this inequality proves the theorem when q ≥ 3. When k = 2, q = 3,
and h = 1, we are in the case k > h, so by our earlier observation, Σ1 is empty and the
logarithmic term on the right side of (14) is superfluous. The stronger version of (14) that
results from its omission establishes the theorem in this last remaining case. □

2.2. The Carmon–Entin approach. We now present a simplified version of the method
of Carmon and Entin [1], which gives a quick proof of Theorem 2 in the squarefree case k = 2
for q > 2. (With small adjustments, the method can be applied to the case q = 2 as well,
but we defer that discussion to the general proof in §4.)

The method relies on two main observations. First, we note that when G = P 2A for
some polynomials P and A, we have also P | G′, since G′ = 2PP ′A + P 2A′. This simple
observation is central also to the proofs in [1] of the more general theorems there.

Our second observation, which replaces a more elaborate construction in [1], is that in
characteristic p, the coefficients of the monomials xp−1, x2p−1, . . . in G′ vanish, and so G′ ∈
Dp−1

q , where

Dj
q := {amxm + · · ·+ a0 ∈ Fq[x] | ai = 0 if i ≡ j (mod p)} .

Let
Σ3 = |{G ∈ Iq(F, h) : P

2 | G for some P ∈ Pq, deg(P ) > h}|.
By the above observations, any polynomial G counted by Σ3 has derivative G′ lying in
Iq(F

′, h− 1) ∩ Dp−1
q , and G′ shares an irreducible factor P with G, where degP > h. Note

that
|Iq(F

′, h− 1) ∩ Dp−1
q | = qh−⌊h/p⌋,

which is significantly smaller than the total number of polynomials in Iq(F, h). Next, we
show that the number of polynomials counted by Σ3 is not much larger than the number of
their derivatives.

Fix H ∈ Iq(F
′, h − 1) ∩ Dp−1

q , and let P be an irreducible divisor of H of degree at least
h + 1. Note that P can divide at most one such polynomial H, so P 2 divides a polynomial
in Iq(F, h) if and only if H has an antiderivative in this interval which is divisible by P .
Since, H ∈ Dp−1

q , each monomial aixi of H has an “obvious” antiderivative ai(i + 1)−1xi+1;
let H0 be the resulting antiderivative of H. The general antiderivative of H is H0+C for any
polynomial C ∈ Fq[x

p]. So, H has an antiderivative divisible by P in the interval Iq(F, h)
if and only if there is a polynomial C ∈ Fq[x

p] that lies in the congruence class C ≡ −H0
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(mod P ) (in Fq[x]) and is such that H0+C ∈ Iq(F, h). Since degP > h, if such polynomials
exist, at most one can lie in the interval Iq(F, h).

Thus, whenever H ̸= 0, each irreducible factor of H of degree at least h + 1 corresponds
to at most one polynomial G counted by Σ3. Since H has degree at most n − 1, it has
≤ (n−1)/(h+1) < n/(h+1) such irreducible factors. On the other hand, if H is identically
zero (which can happen only when Iq(F, h) contains a pth power), thenH has exactly q⌊h/p⌋+1

antiderivatives in Iq(F, h). We conclude that

Σ3 ≤
n

h+ 1
qh−⌊h/p⌋ + q⌊h/p⌋+1.

Combining the last bound with the estimates for Σ1 and Σ2 in (9) and (10) with k = 2
and ℓ = h, we find that

Nq(F, h) ≤ qh+1

(
ln

(
q

q − 1

)
+

q + 1

(q − 1)qh
+

nq−(h+1)/p

h+ 1
+ qh(1/p−1)

)
. (15)

When h+ 1 ≥ p(logq n− logq logq n) (this is equivalent to (3) with θ = p−1), we have

(h+ 1)q(h+1)/p ≥ pn

(
1−

logq logq n

logq n

)
,

and our bound on Nq(F, h) simplifies to

Nq(F, h) ≤ qh+1

(
ln

(
q

q − 1

)
+

1

p
+O

(
logq logq n

logq n

))
.

When n is large and q > 2, this proves (5) and establishes Theorem 2.

3. Intervals without k-free polynomials

In this section, we establish the polynomial analog of Erdős’ result on large gaps between
squarefree integers stated in Theorem 1. In its proof, we make use of the following lemma,
which can be found in [11, Theorem 4.1].

Lemma 4. Let P1, P2, . . . , Pj, . . . be any ordering of the irreducible monic polynomials in
Fq[x] such that degPj ≤ degPj+1. Then, as j → ∞,

degPj ≤ logq j + logq logq j + logq (q − 1) + o(1).

We also count precisely the number of polynomials in an interval covered by congruences
modulo powers of irreducible polynomials of small degrees.

Lemma 5. Let k ≥ 2, ℓ ≤ logq(h/k)− 1, and fix a congruence class Qj (mod P k
j ) for every

irreducible polynomial Pj with degPj ≤ ℓ. Then the number of polynomials in any interval
Iq(F, h) satisfying at least one of these congruences is exactly

qh+1

(
1−

ℓ∏
d=1

∏
d∈Pq(d)

(
1− 1

qkd

))
= qh+1

(
1− 1

ζq(k)
+O

(
1

ℓqℓ

))
.
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Proof. Define M =
ℓ∏

d=1

∏
P∈Pq(d)

P k. We find that

degM =
ℓ∑

d=1

kdπq(d) ≤
ℓ∑

d=1

kqd <
kqℓ+1

q − 1
≤ h

q − 1
≤ h.

Thus, we can apply the inclusion-exclusion principle and Lemma 1 to get an exact count
of the polynomials in Iq(F, h) covered by the congruence classes Qj mod P k

j . In particular,
since degM < h such an interval will always contain exactly

qh+1

(
1−

ℓ∏
d=1

∏
d∈Pq(d)

(
1− 1

qkd

))
= qh+1

(
1−

ℓ∏
d=1

(
1− 1

qkd

)πq(d)
)

polynomials satisfying at least one of the congruences.
Using that

∏
P∈Pq

(
1− q−k degP

)
= ζq(k)

−1 = 1− q−k+1, and the estimate∑
d>ℓ

ln

(
1− 1

qkd

)−πq(d)

≤
∑
d>ℓ

qd

d
ln

(
1− 1

qkd

)−1

≪ 1

ℓqℓ
.

we find that
ℓ∏

d=1

(
1− 1

qkd

)πq(d)

= (1− q1−k)
∏
d>ℓ

(
1− 1

qkd

)−πq(d)

= ζq(k)
−1 +O

(
1

ℓqℓ

)
and the result follows. □
Proof of Theorem 1. Let h be large. We will use the Chinese Remainder Theorem to con-
struct a polynomial F of degree at most n such that no polynomial in Iq(F, h) is squarefree
when h satisfies (1).

The construction is based on a simple idea. Let P1, P2, . . . be an ordering of Pq such that
degPj ≤ degPj+1. If Q1, Q2, . . . , Qm are any polynomials such that the congruence classes
Qj mod P k

j , j ≤ m, cover the interval Iq(0, h), then the interval Iq(F, h) contains no k-free
polynomial whenever F satisfies the congruences

F ≡ −Qj (mod P k
j ) (1 ≤ j ≤ m).

Since the Chinese Remainder Theorem determines such a polynomial F modulo P k
1 · · ·P k

m,
we can find a nontrivial solution of these congruences of degree ≤ deg(P k

1 · · ·P k
m). We can

use Lemma 4 to bound the degree of such a polynomial F . We have

degF ≤ k

m∑
j=1

degPj ≤ k

m∑
j=1

(logq j + logq logq j + logq(q − 1) + o(1))

=
k

ln q
ln(m!) + km logq logq m+ km logq(q − 1) + o(m)

= km

(
logq m+ logq logq m+ logq

(
q − 1

e

)
+ o(1)

)
=: δ(m),

9



where the last step uses Stirling’s formula. Thus, the proposition will follow, if we show
that condition (1) allows us to find an integer m with δ(m) ≤ n and m congruence classes
Qj mod P k

j that cover Iq(0, h).
The simplest way to find such a congruence cover is to use a separate congruence class

for every polynomial in Iq(0, h). Then m = qh+1. This already suffices to establish the
theorem when the constant c in (1) satisfies c < (kq)−1. It is clear, however, that this simple
argument is somewhat wasteful. Next, we use Lemma 5 to cover multiple polynomials by
congruences modulo small irreducible polynomials.

Define ℓ := ⌊logq(h/k)⌋ − 1 and let m0 =
∑ℓ

d=1 πq(d) be the number of irreducible poly-
nomials in Mq of degree at most ℓ. By Lemma 5, we find that the number of polynomials
in Iq(0, h) covered by any choice of congruence classes Qi mod Pi, for each i ≤ m0 is exactly

qh+1

(
1−

ℓ∏
d=1

∏
d∈Pq(d)

(
1− 1

qkd

))
.

This leaves us, as h → ∞, with

m1 := qh+1

ℓ∏
d=1

∏
d∈Pq(d)

(
1− 1

qkd

)
= qh+1

(
1

ζq(k)
+O

(
1

ℓqℓ

))
= qh+1

(
ζq(k)

−1 + o
(
h−1
))

uncovered polynomials, which we cover trivially, using one congruence class for each. Thus,
the total number of congruences we require is

m = m0 +m1 = m0 + qh+1
(
ζq(k)

−1 + o
(
h−1
))

= qh+1
(
ζq(k)

−1 + o
(
h−1
))

, (16)

after noting that m0 ≤
∑

q≤ℓ
qd

d
≪ qℓ ≪ h. Using this value of m in our expression for δ(m)

we find that
δ(m) = kζq(k)

−1qh+1
(
h+ logq h+ c0 + o(1)

)
,

where c0 = logq((q− 1)/e)+ 1− logq ζq(k). Hypothesis (1) ensures that, for sufficiently large
h and n,

δ(m) ≤ kcn

ζq(k) logq n
(logq n+O(1)) < n, (17)

by the assumption that kc < ζq(k). Thus, the polynomial that we have constructed has
degree at most n and the result follows. □
Remark 1. One sees readily that if hypothesis (1) is replaced by

qh+1 ≤ ζq(k)

k
· nq

ε(n)

logq n
,

inequality (17) can be refined to

δ(m) ≤ nqε(n)

logq n

(
logq n+ logq

(
q − 1

ke

)
+ o(1)

)
.

In particular, when ε(n) ≤ logq
(
1− c′

logq n

)
with c′ > logq ((q − 1)/ke), we find that δ(m) < n.

10



4. Proof of the main theorem

In this section, we extend the ideas from §2.2 to prove Theorem 2. We finish the section
with brief remarks on the proof that justify our comments in the introduction about possible
enhancements to the theorem. We also remark on the conclusions one can draw when h and
n are of moderate size and how such conclusions compare to Theorems 3 and 4.

Proof of Theorem 2. Consider an integer k ≥ 2. Similarly to §2.2, we start from (6) and use
(8)–(10) to bound the contribution to the right side of (6) from irreducible polynomials P
with degP ≤ ℓ = h. Thus, we focus on the quantity

Σ3 = |{G ∈ Iq(F, h) : P
k | G for some P ∈ Pq, deg(P ) > ℓ}|.

As in the case k = 2 before, we find that if P k divides G, then P divides the first k − 1
derivatives of G, and that the j-th derivative, G(j), lies in the set

I(j)
q (F, h) := Iq(F

(j), h− j) ∩
⋂

i+j≥p

Di
q.

When k < p, we may use these observations in a similar fashion to §2.2 to complete the
proof. To begin, let h = ps + r, with 0 ≤ r < p. We observe that I(k−1)

q (F, h) is contained
in a shift of a finite-dimensional linear space over Fq of dimension

h+ 1−
k−1∑
i=1

⌈
h+ 1− i

p

⌉
= h+ 1− (k − 1)s−min(r + 1, k − 1) ≤ (h+ 1)

(
1− k − 1

p

)
.

Hence, ∣∣I(k−1)
q (F, h)

∣∣ ≤ q(h+1)(1−(k−1)/p).

By a similar counting argument, we find that there are ≤ q(k−1)(h/p+1) polynomials G ∈
Iq(F, h) with G(k−1) = 0. Next, we will show that for each of the < n/(ℓ + 1) irreducible
factors P , with degP > ℓ, of a nonzero polynomial H ∈ I(k−1)

q (F, h), there is at most one
G ∈ Iq(F, h) divisible by P k. From this, we can conclude that

Σ3 ≤
n

ℓ+ 1
q(h+1)(1−(k−1)/p) + q(k−1)(h/p+1). (18)

Consider a nonzero H ∈ I(k−1)
q (F, h) and an irreducible factor P of H of degree at least

h + 1. A polynomial G ∈ Iq(F, h) divisible by P k exists if and only if we can find a finite
sequence of polynomials Hk−1 = H,Hk−2, . . . , H1, H0 = G, each divisible by P , such that

Hj ∈ I(j)
q (F, h), H ′

j = Hj+1 (0 ≤ j < k − 1).

Since degP > h, I(j)
q (F, h) can contain at most one multiple of P , so for each j, there is at

most one possibility for the polynomial Hj. In particular, at most one possible polynomial
G ∈ Iq(F, h) is divisible by P k. This establishes our earlier claim and completes the proof
of (18).

Suppose now that k ≥ p and G ∈ Iq(F, h) is divisible by P k for some P ∈ Pq. We
intend to take p − 1 derivatives of G, but we need to proceed with care. Recall the base-p
representation of k:

k = dpa + · · ·+ d1p+ d0 =: k1p+ d0.
11



After taking d0 derivatives of G, we have G(d0) = P k1pQ for some polynomial Q, and after-
wards we find that

G(j) = P k1pQ(j−d0) (j ≥ d0).

In particular, P k1p | G(p−1). On the other hand, G(p−1) ∈ Fq[x
p], so G(p−1) = Hp for some

polynomial H ∈ Fq[x].
When i > (h + 1)/p − 1, the coefficient of xi in H depends only on a single coefficient

of F . So H ∈ Iq(F1, h1), where h1 = ⌊(h+1)p−1⌋ − 1 and F1 = (F (p−1))1/p is a polynomial
of degree < np−1 determined uniquely by F . Moreover, by the uniqueness of polynomial
factorization in Fq[x], we have P k1 | H. On the other hand, if H ∈ Iq(F1, h1) is nonzero and
divisible by P k1 for some irreducible polynomial P , with degP > ℓ, the argument we gave to
justify (18) shows that there is at most one polynomial G ∈ Iq(F, h) such that G(p−1) = Hp

(and G,G′, . . . , G(p−1) are all divisible by P ).
Let S1 ⊂ Iq(F1, h1) be a set (with 0 ∈ S1 if 0 ∈ Iq(F1, h1)) to be specified shortly. For any

H ∈ S1, there are qh−h1 polynomials G ∈ Iq(F, h) with G(p−1) = Hp, so we find that
Σ3 ≤ Σ3,1 + qh−h1 |S1|, (19)

where Σ3,1 counts pairs (H,P ), with P ∈ Pq, H ∈ Iq(F1, h1) \ S1, P
k1 | H, and degP > ℓ.

When k1 ≥ p (equivalently a ≥ 2), we can iterate the above argument, with a slight twist.
If (H1, P ) is one of the pairs counted by Σ3,1, the above construction with H1 in place of
G yields a polynomial H2 ∈ Iq(F2, h2), where h2 = ⌊(h1 + 1)p−1⌋ − 1 and F2 a polynomial
of degree < np−2 determined uniquely by F1 (and therefore, by F ). Moreover, we have
P k2 | H2, where k2 = (k1 − d1)/p. Suppose now that S2 ⊂ Iq(F2, h2) is a set of polynomials,
to be specified shortly (with 0 ∈ S2 if 0 ∈ Iq(F2, h2).

We now specify S1 as the set of polynomials H ∈ Iq(F1, h1) such that H(p−1) = Ap for
some A ∈ S2 (note that this condition ensures that 0 ∈ S1 if 0 ∈ Iq(F1, h1)). For each
A ∈ S2, there are ≤ qh1−h2 polynomials H ∈ S1, so

|S1| ≤ qh1−h2 |S2|. (20)
For any such choice of S2, we find that Σ3,1 ≤ Σ3,2, where Σ3,2 counts pairs (H,P ), with P
irreducible, H ∈ Iq(F2, h2) \ S2, P k2 | H, and degP > ℓ. Therefore, we deduce that

Σ3 ≤ Σ3,2 + qh−h2 |S2|. (21)
In general, we can iterate this argument a total of a times to find a polynomial Fa of

degree < np−a, determined uniquely by F , such that
Σ3 ≤ Σ3,a + qh−ha |Sa|,

where ha = ⌊(ha−1 + 1)p−1⌋ − 1, the set Sa ⊂ Iq(Fa, ha) is at our disposal to choose (so
long as 0 ∈ Sa if 0 ∈ Iq(Fa, ha)), and Σ3,a is the number of pairs (H,P ), with P irreducible,
subject to

H ∈ Iq(Fa, ha) \ Sa, P d | H, degP > ℓ.

A short computation shows that
(h+ 1)p−a − 3 ≤ ha ≤ (h+ 1)p−a − 1. (22)

At this point, we choose Sa to be the set of polynomials H ∈ Iq(Fa, ha) with H(d−1) = 0, so
|Sa| ≤ q(d−1)(hap−1+1). Hence,

Σ3 ≤ Σ3,a + qh−ha+(d−1)(ha/p+1). (23)
12



When d = 1, we apply the trivial bound for Σ3,a:

Σ3,a ≤ (degFa)(ℓ+ 1)−1|Iq(Fa, ha)| <
n

pa(ℓ+ 1)
q(h+1)p−a

. (24)

When d > 1, we may bound Σ3,a using a variant of (18) with h = ha, k = d, and n = degFa.
Recall that the second term on the right side of (18) accounts for polynomials in G ∈ Iq(F, h)
with G(d−1) = 0. Thus, by our choice of Sa, the respective bound for Σ3,a becomes

Σ3,a ≤ (degFa)(ℓ+ 1)−1q(ha+1)(1−(d−1)/p) <
n

pa(ℓ+ 1)
q(h+1)p−a(1−(d−1)/p).

Note that setting d = 1 in the bound above yields the exact same expression as (24). So, in
either case, using this in (23) along with (22) yields

Σ3 ≤
n

pa(h+ 1)
q(h+1)p−a(1−(d−1)/p) + q(h+1)(1−(p−d+1)p−a−1)+d+1. (25)

Note that when a = 0 and d = d0 = k < p, (18) is a slightly stronger version of (25)
(whose second term contains an extra factor of q2+(k−1)/p < q3). Therefore, we combine (25)
with (6) and (8)–(10) to conclude, for sufficiently large h and any k ≥ 2, that

Nq(F, h) ≤ qh+1

(
ln ζq(k) +

n

pa(h+ 1)
q−θ(h+1) +O

(
h−1
))

, (26)

where θ = 1− (p− d+ 1)p−a−1.
If h is chosen so that

qh+1 ≥
(

cn

logq n

)1/θ

(27)

for some absolute constant c > 0, it follows that

Nq(F, h) ≤ qh+1

(
ln ζq(k) +

θ

pac
+O

(
logq h

h

))
. (28)

Since θ ≤ 1− k−1, this establishes the theorem for c ≥ 1. □
Remark 2. Suppose that n and h are large, and let Σ′

1, be the subsum of Σ1 (in (8)) with
h0 < d ≤ h, where h0 = o(h). Also, let

Σ0 =
∣∣{Q ∈ Iq(F, h) : P

k | Q for some P ∈ Pq, degP ≤ h0

}∣∣ .
Choosing h0 sufficiently small in terms of h, one may apply a sieve argument (similar to the
proof of Lemma 5) to Σ0 to obtain an asymptotic formula for Σ1. One can then replace the
term ln ζq(k) in (28) by 1− ζq(k)

−1 + o(1). From this we see that c can be taken to be any
constant c > θζq(k)p

−a so long as n is taken sufficiently large.
On the other hand, if the constant c in (27) is replaced by a function g(n) → ∞ as n → ∞,

one may turn the above bounds into an asymptotic formula for the number Qq(F, h) of k-free
polynomials in Iq(F, h), since

Σ0 − Σ′
1 − Σ2 − Σ3 ≤ Qq(F, h) ≤ Σ0.

Remark 3. Theorems 3 and 4 give fully explicit ranges of q and n for which the short interval
Iq(F, h) contains k-free polynomials under the respective constraints on h, because bounds
like (14) above (see also (34), (45), and (49) in §5) are explicit. Theorem 2, on the other
hand, is stated for sufficiently large n to simplify the analysis of (26), which focuses on the
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h \ q 2 3 4 5 7 8 9 11 19 25 27

h = 1 — 3∗ 3∗ 3∗ 4† 11 4 4† 4† 6 14
h = 2 — 6∗ 12 6∗ 8† 89 20 8† 8† 19 75
h = 3 — 9∗ 57 9 12† 393 61 12† 12† 49 307
h = 4 — 12∗ 174 17 16† 1467 164 16† 16† 118 1156
h = 5 — 23 459 29 25 5092 414 20† 20† 271 4173
h = 6 — 42 1124 48 39 16984 1013 28 24† 603 14629
h = 7 — 73 2641 77 60 55234 2417 40 28† 1314 50207
h = 8 23 123 6048 120 90 176448 5674 57 34 2818 169578

Table 1. Values of n0(q, h) for which Iq(F, h) contains a squarefree polyno-
mial whenever degF ≤ n0. Numbers marked with an * or a † were obtained
using Theorems 3 or 4, respectively.

case when h and n are large. However, if the contributions to the right side of (26) from Σ2

and Σ3 are kept explicit, one can determine, for every fixed triple (k, q, h), with h ≥ h0(k, q),
a range of degrees n for which Iq(F, h) contains k-free polynomials. It appears difficult to
channel such observations into a general statement similar to Theorems 3 and 4, but it is
possible to draw on them to gain some broad insights.

For example, Table 1 lists several pairs (q, h) and the values of respective integers n0(q, h)
such that the interval Iq(F, h) contains a squarefree polynomial whenever degF ≤ n0. For
values of q with p > 2, these bounds are computed using (15), taking the largest value of
n such that the coefficient of qh+1 is less than 1. For those values with p = 2, an explicit
version of (26) is used, after noting that in this specific case, k = p = 2, the lower bound in
(22) can be improved to (h+1)/2− 3/2. This results in an expression identical to (15), but
in which the second to last term is half as large. Note that even these values are likely much
smaller than the “truth.” For example, in the case q = 2 these methods do not prove that
all short intervals with h = 1 or 2 and any value of n are guaranteed to contain squarefree
polynomials, however direct computation shows that every such short interval contains a
squarefree polynomial in these cases when n ≤ 9 and 16 respectively.

In some cases, the bounds obtained using Theorems 3 and 4 are stronger than those
obtained here. Such improved bounds are included in the table above marked with the
symbols * or †.

5. The differencing method for polynomials

Recall the set Sq(d) defined in (12). In this section, we prove several results about the
spacing between elements of Sq(d). Through applications of Lemma 3, these results will then
yield upper bounds on |Sq(d)|, which apply to prove Theorems 3 and 4.
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Our first result is a bound on the minimum degree of the difference of distinct elements of
Sq(d). Recall that we use p to denote the characteristic of the finite field Fq. We note that
when p ∤ k, we have r = 1 in the proposition below, while when p | k, we have 1 < r ≤ k.

Proposition 1. Suppose that h < d ≤ n/k and G,H ∈ Sq(d), with G ̸= H. Let r = r(k, p)

be the least positive integer such that p ∤
(
k
r

)
. When r < k, we have

deg(G−H) ≥ (k + r)d− n

r
. (29)

When r = k, we have either (29) with r = k, or

deg(G−H) ≤ h+ kd− n

k
. (30)

Proof. Let A,B ∈ Mq(n−kd) be such that GkA,HkB ∈ Iq(F, h). Then deg(GkA−HkB) ≤
h, and we deduce that

deg
(
(Gk −Hk)A+Hk(A− B)

)
≤ h. (31)

Note that

Gk −Hk =
(
(G−H) +H

)k −Hk =
k∑

j=1

(
k

j

)
(G−H)jHk−j.

Since deg(G−H) < d = degH, it follows that

deg(Gk −Hk) = r deg(G−H) + (k − r)d. (32)
Suppose first that A ̸= B. Then the degree of the second term on the left side of (31) is

deg(Hk(A− B)) = kd+ deg(A− B) ≥ kd > h.

This is only possible if the two terms on the left side of (31) have the same degree, meaning
that

deg((Gk −Hk)A) = deg(Hk(A− B)) ≥ kd.

Combining this with (32) gives
kd ≤ r deg(G−H) + (k − r)d+ degA = r deg(G−H) + (n− rd),

which establishes (29) in this case.
Next, we consider the case A = B. Then (31) and (32) give

r deg(G−H) + (n− rd) = deg((Gk −Hk)A) ≤ h,

and hence,

deg(G−H) ≤ h+ rd− n

r
.

When r = k, this establishes (30), and when r < k, we get

deg(G−H) <
(r + 1)d− n

r
≤ 0,

which contradicts our assumption that G ̸= H. Therefore, this case occurs only when
r = k. □
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We remark that when r = k and d < (n−h)/k, inequality (30) contradicts the assumption
G ̸= H of the proposition, so for d in this range, we always have (29). On the other hand,
when r = k and (n − h)/k ≤ d ≤ n/k, we can combine (29) and (30) to obtain a rather
sharp bound on |Sq(d)|, which we state in the following lemma.

Lemma 6. Assume the notation of Propositon 1. If r = k and (n − h)/k ≤ d ≤ n/k, we
have

|Sq(d)| ≤ qh/k+1.

Proof. Let δ = (2kd − n)/k. According to the proposition, any two elements G,H of Sq(d)
with deg(G−H) < δ must satisfy (30). In particular, for a fixed G, there are at most

|Iq(G, (kd+ h− n)/k)| ≤ q(kd+h−n)/k+1 =: κ

polynomials H ∈ Sq(d) with deg(G−H) < δ. Thus, Lemma 3 gives

|Sq(d)| ≤ κqd−δ = qh/k+1. □

Recall that in §2 we derived Theorem 3 in the case when p ∤ k from (29) with r = 1. We
can use Lemma 6 to complete the proof of Theorem 3 in the case when p | k.

Proof of Theorem 3: p | k. To begin, we observe that when d ≤ n/k and r > 1 in Proposi-
tion 1, the bound (29) is stronger than its version with r = 1. Therefore, when 1 < r < k,
we still have inequality (13) (and more), and so we may follow the proof from the case p ∤ k
(given in §2.1) without any changes. Thus, we may focus on the case r = k.

Note that when h ≥ n/(k + 1), Lemma 6 is applicable in the full range h < d ≤ n/k.
Hence, ∑

h<d≤n/k

|Sq(d)| ≤
(n
k
− h
)
qh/k+1 ≤ (h/k)qh/k+1. (33)

Combining this with (6) and (8)–(11) with ℓ = h, we find that

Nq(F, h) ≤ qh+1

(
ln ζq(k) +

q + kh − 1

q(q − 1)h
+ (h/k)q(1−k)h/k

)
. (34)

When k ≥ 3, the last expression is < qh+1, provided for all q ≥ 3 and h ≥ 1. When k = 2
(note that in this case, we have p = 2 and q = 2f ), the same holds for q ≥ 4 and h ≥ 1. □

Next, we consider s-tuples of distinct polynomials G = {G1, . . . , Gs} in Sq(d), with s ≥ 3.
If G is such an s-tuple, we write

δ(G) = min
1≤i<j≤s

deg(Gi −Gj),

∆(G) = max
1≤i<j≤s

deg(Gi −Gj).

By Proposition 1, we have
δ(G) ≥ (k + 1)d− n, (35)

whenever h < d ≤ n/k and r = r(k, p) < k (or r = k and d < (n− h)/k). Our next result is
a lower bound on ∆(G) for triples.
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Proposition 2. Suppose that p ∤ k(k + 1) and h < d ≤ n/k. If G = {G1, G2, G3} is a set
of distinct polynomials in Sq(d), then

∆(G) ≥ (k + 2)d− n

3
. (36)

Proof. For each 1 ≤ i ≤ 3, let Ai ∈ Mq(n− kd) and Ri be polynomials such that

F = Gk
iAi −Ri, degRi ≤ h. (37)

We now consider the rational function

Φ[G1, G2, G3] = (G3 −G2)
F

Gk
1

+ (G1 −G3)
F

Gk
2

+ (G2 −G1)
F

Gk
3

,

essentially a second divided difference of the function Φ(t) = Ft−k on Fq(x) (see [16] for
background on divided differences). By (37), we have

Φ[G1, G2, G3] = N −Θ, (38)
where

N = (G3 −G2)A1 + (G1 −G3)A2 + (G2 −G1)A3,

Θ = (G3 −G2)
R1

Gk
1

+ (G1 −G3)
R2

Gk
2

+ (G2 −G1)
R3

Gk
3

.

Our immediate goal is to show that N is a nonzero polynomial by showing that degN ≥ 0.
In the rest of the proof, we suppress the dependence on G and write simply ∆, δ, and Φ
instead of ∆(G), δ(G), and Φ[G1, G2, G3].

We can rewrite the definition of Φ as the polynomial identity

ΦGk
1G

k
2G

k
3 = F

(∏
i<j

(Gj −Gi)

)( ∑
a+b+c=2k−2

Ga
1G

b
2G

c
3

)
, (39)

where the product on the right is over all pairs of indices i, j with 1 ≤ i < j ≤ 3, and the
sum is over all triples a, b, c with 0 ≤ a, b, c ≤ k − 1 and a+ b+ c = 2k − 2. Observe that if
both deg(Gj −Gi) < ∆ and deg(Gk −Gi) < ∆, then also

deg(Gj −Gk) ≤ max{deg(Gj −Gi), deg(Gk −Gi)} < ∆,

which contradicts the choice of ∆. Thus, at least two of the differences in the above product
must have degree ∆, and we get

2∆ + δ ≤ deg

(∏
i<j

(Gj −Gi)

)
≤ 3∆. (40)

Also, the sum on the right side of (39) has
(
k+1
2

)
terms, each of them in Mq((2k − 2)d).

Since p ∤
(
k+1
2

)
, it follows that the sum is a polynomial of degree (2k − 2)d, and we deduce

n+ (2k − 2)d+ 2∆+ δ ≤ deg(ΦGk
1G

k
2G

k
3) ≤ n+ (2k − 2)d+ 3∆. (41)

On the other hand, we have

ΘGk
1G

k
2G

k
3 = R1(G3 −G2)G

k
2G

k
3 +R2(G1 −G3)G

k
1G

k
3 +R3(G2 −G1)G

k
1G

k
2. (42)
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Since each of the three terms on the right side of (42) has degree ≤ h+∆+ 2kd, we obtain
deg

(
ΘGk

1G
k
2G

k
3

)
≤ 2kd+∆+ h. (43)

Moreover, since p ∤ k, we have (35) by Proposition 1. Combining (35), (41), and (43), we
conclude that

deg(ΦGk
1G

k
2G

k
3) ≥ n+ (2k − 2)d+ 2∆+ δ

≥ (3k − 1)d+ 2∆

> 2kd+ h+ 2∆ ≥ deg
(
ΘGk

1G
k
2G

k
3

)
.

Thus, by (38),
deg(NGk

1G
k
2G

k
3) = deg(ΦGk

1G
k
2G

k
3) ≥ 0,

which establishes our prior claim that N ̸= 0. Using the upper bound in (41), we get
3kd ≤ deg(NGk

1G
k
2G

k
3) = deg(ΦGk

1G
k
2G

k
3) ≤ n+ (2k − 2)d+ 3∆,

and the desired conclusion follows. □
We now use Proposition 2 and Lemma 6 to prove Theorem 4.

Proof of Theorem 4. Suppose first that p ∤ k(k+1). When d > h, we have d ≥ (n+1)/(k+2),
and Proposition 2 allows us to apply Lemma 3 with κ = 2 and δ = ((k+2)d−n)/3 to deduce
the bound

|Sq(d)| ≤ 2q(n−(k−1)d)/3. (44)
Therefore,∑

h<d≤n/k

|Sq(d)| ≤ 2
∑

h<d≤n/k

q(n−(k−1)d)/3 < 2q(n−(k−1)d0)/3
∑
j≥0

q−(k−1)j/3 =
2q(n+1)/(k+2)

q1/3 − q−(k−2)/3
,

where d0 = (n+ 1)/(k + 2). This inequality, (6), and (8)–(11) with ℓ = h now give

Nq(F, h) ≤ qh+1

(
ln ζq(k) +

q + kh − 1

q(q − 1)h
+

2q−(k+1)/(k+2)

q1/3 − q−(k−2)/3

)
, (45)

which implies (5) when k = 2 and q ≥ 7 or when k ≥ 3 and q ≥ 5.
Next, let p | k and suppose that r < k in Proposition 1. Then Proposition 1 yields (29)

with r ≥ 2, and hence, with r = 2. Thus, Lemma 3 with κ = 1 and δ = ((k + 2)d − n)/2
yields the bound

|Sq(d)| ≤ q(n−kd)/2, (46)
which supersedes (44). Hence, (45) holds also in this case.

Finally, let p | k and r = k, and assume that n/(k + 2) ≤ h < n/(k + 1). When
h < d < (n− h)/k, we can again use Proposition 1 to obtain (46). Hence,∑

h<d<(n−h)/k

|Sq(d)| ≤ q(n−kd0)/2
∑
j≥0

q−kj/2 =
q(n+1)/(k+2)

q1/2 − q−(k−1)/2
. (47)

Moreover, when (n− h)/k ≤ d ≤ n/k, we may use Lemma 6 in a similar fashion to (33) to
show that ∑

(n−h)/k≤d≤n/k

|Sq(d)| ≤
(
h

k
+ 1

)
qh/k+1. (48)
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Combining (47) and (48) with (6) and (8)–(11) with ℓ = h, we conclude that

Nq(F, h) ≤ qh+1

(
ln ζq(k) +

q + kh − 1

q(q − 1)h
+

q−(k+1)/(k+2)

q1/2 − q−(k−1)/2
+

(
h

k
+ 1

)
q(1−k)h/k

)
, (49)

which again implies (5). □

Appendix A. An analogue of the methods of Halberstam and Roth

As in the proofs of Theorems 3 and 4, we need to estimate

Σ3 =
∑

ℓ<d≤n/k

|Sq(d)|,

where ℓ ≥ h. When k ≥ 3, the estimation of Σ3 relies on the following proposition.

Proposition 3. Let k ≥ 3 and p ∤ k
(
2k−1
k−1

)
. If n/(2k) ≤ h < d ≤ n/k, we have

|Sq(d)| ≤ 2kq(n−d)/(2k−1).

We postpone the proof of this result until the end of the section and focus first on the
proof of Theorem 5. By the proposition,

Σ3 ≤
∑

ℓ<d≤n/k

2kq(n−d)/(2k−1) < 2kq(n−ℓ)/(2k−1)
∑
j≥0

q−j/(2k−1)

=
2kq(n−ℓ)/(2k−1)

1− q−1/(2k−1)
≤ 2kqh+(h−ℓ)/(2k−1)

1− q−1/(2k−1)
,

on recalling that h ≥ n/(2k). Writing δq = q−1/(2k−1), we have

1− δq >
1− δ2k−1

q

2k − 1
=

q − 1

(2k − 1)q
,

so

Σ3 ≤
2k(2k − 1)qh+1h(h−ℓ)/(2k−1)

q − 1
. (50)

Together, (6), (8)–(11), and (50) give

Nq(F, h) < qh+1

(
ln ζq(k) +

(q + k)qℓ−h

q(q − 1)h
+

k(4k − 2)q(h−ℓ)/(2k−1)

q − 1

)
.

We now select
ℓ = h+ logq(qh)

(2k−1)/2k.

This choice essentially balances the second and third terms on the right side of the last
inequality and gives

Nq(F, h) < qh+1

(
ln ζq(k) +

(q + 4k2 − k)(qh)−1/2k

q − 1

)
. (51)

When h is sufficiently large in terms of k, this completes the proof of the theorem.

All that remains is to prove Proposition 3.
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Proof of Proposition 3. Consider the polynomials P0, Q0 ∈ Z[x] given by

P0(x) = 1−
(
2k − 1

1

)
x+ · · ·+ (−1)k−1

(
2k − 1

k − 1

)
xk−1,

(1− x)2k−1 = P0(x)− xkQ0(x).

We use these to define the degree-(k − 1) forms
P (x, y) = xk−1P0 (y/x) , Q(x, y) = xk−1Q0 (y/x) ,

which satisfy the algebraic identity
(x− y)2k−1 = xkP (x, y)− ykQ(x, y).

In particular, for any polynomials G1, G2 ∈ Fq[x], we obtain
(G1 −G2)

2k−1 = Gk
1P (G1, G2)−Gk

2Q(G1, G2). (52)
Next, we consider (52) when G1, G2 ∈ Sq,k(d). We find polynomials Ai ∈ Mq(n− kd) and

Ri with
F = Gk

iAi −Ri, degRi ≤ h. (53)
We may then rearrange (52) as

(G1 −G2)
2k−1F = F

(
Gk

1P (G1, G2)−Gk
2Q(G1, G2)

)
= N +Θ, (54)

where
N = Gk

1G
k
2

(
P (G1, G2)A2 − (G1, G2)A1

)
,

Θ = Gk
2Q(G1, G2)R1 −Gk

1P (G1, G2)R2.

Note that
degΘ ≤ (2k − 1)d+ h < 2kd.

When
deg(G1 −G2) <

2kd− n

2k − 1
=: ∆k, (55)

we find also that
deg

(
(G1 −G2)

2k−1F
)
= (2k − 1) deg(G1 −G2) + n < 2kd.

Thus, under condition (55), we can deduce from (54) that
deg

(
Gk

1G
k
2(P (G1, G2)A2 −Q(G1, G2)A1)

)
< 2kd.

Since deg(Gk
1G

k
2) = 2kd, this is possible only if

P (G1, G2)A2 −Q(G1, G2)A1 = 0. (56)
That is, if G1, G2 ∈ Sq(d) satisfy (55), then G1, G2, and the respective polynomials A1, A2

must satisfy the polynomial identity (56).
Consider a third polynomial G3 ∈ Sq(d) such that

deg(G3 −Gi) < ∆k (57)
holds for i = 1. Then, as an immediate consequence of (55), (57) holds also for i = 2.
Further, by the argument in the last paragraph, we have also

P (G1, G3)A3 −Q(G1, G3)A1 = 0, (58)
20



and
P (G3, G2)A2 −Q(G3, G2)A3 = 0. (59)

Finally, from (58) and (59), we readily obtain that

P (G1, G3)P (G3, G2)A2 −Q(G1, G3)Q(G3, G2)A1 = 0. (60)

We now consider an interval I of length ≤ ∆k and fix distinct polynomials G1, G2 ∈
Sq(d) ∩ I. Then G1, G2 satisfy (55), and any other polynomial G3 ∈ Sq(d) ∩ I must satisfy
(60). We view

P (G1, t)P (t, G2)A2 −Q(G1, t)Q(t, G2)A1 = 0 (61)
as a polynomial equation in t over Fq[x]. By the construction of P and Q, the left side of
(61) is a polynomial of degree 2k − 2 with leading coefficient

(−1)k−1

(
2k − 1

k − 1

)
(A2 − A1).

We will show that this coefficient is nonzero. The hypothesis on the characteristic p reduces
this task to showing that A1 ̸= A2.

When A1 = A2 = A, say, conditions (53) yield

deg(Gk
1 −Gk

2) + degA ≤ deg(R1 −R2) ≤ h.

We have

Gk
1 −Gk

2 = (G1 −G2)
k−1∑
j=0

Gj
1G

k−j−1
2 .

The sum over j is a polynomial of degree (k− 1)d with leading coefficient k, which does not
vanish since p ∤ k. As G1 ̸= G2, this implies that

(k − 1)d ≤ deg(Gk
1 −Gk

2) ≤ h− degA < (k + 1)d− n,

a contradiction. Therefore, A1 ̸= A2.
Thus, (61) is a (univariate) polynomial equation of degree 2k− 2 over Fq[x]. The number

of solutions of such an equation is bounded above by its degree, so once G1, G2 (and hence,
A1 and A2) are fixed, there are at most 2k− 2 possibilities for G3 ∈ Sq(d)∩ I. We conclude
that

|Sq(d) ∩ I| ≤ 2k.

Therefore, the conclusion of the proposition follows from Lemma 3 with κ = 2k and δ =
∆k. □
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