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ABsTRACT. Erdds proved that F(A) := 3,4 %

aloga
conjectured this sum is maximized when A is the set of primes. Banks and Martin further conjectured that
F(P1) > ... > F(Px) > F(Pk+1) > ..., where P; is the set of integers with j prime factors counting
multiplicity, though this was recently disproven by Lichtman. We consider the corresponding problems over
the function field Fq[z], investigating the sum F(A) 1= 3 ,c 4 W. We establish a uniform bound

converges for any primitive set of integers A and later

for F(A) over all primitive sets of polynomials A C Fy[z] and conjecture that it is maximized by the set of
monic irreducible polynomials. We find that the analogue of the Banks-Martin conjecture is false for ¢ = 2,
3, and 4, but we find computational evidence that it holds for g > 4.

1. INTRODUCTION

A primitive set is one in which no element of the set divides another. In 1935, Erdés [5] proved that for
any primitive set of positive integers A # {1},

F(A) =Y

a€A

aloga
In 1988, Erdds conjectured that the primitive set which maximizes this sum is the set of primes.
Conjecture 1.1 (Erdés). Let P denote the set of prime numbers. For all primitive sets of positive integers

A# {1}, . .
Zalog;a = Z (1)

ac€A peP plng

While this conjecture remains open, significant progress has been made. In 1991, Zhang [16] showed that
the conjecture holds for all primitive sets containing no element with more than four prime factors counted
with multiplicity. Two years later, Erdés and Zhang [6] showed that F(A) < 1.84 for any primitive set; this
was improved last year by Lichtman and Pomerance |9] to F(4) < eY =1.781072.... For comparison, we
know due to Cohen [4] that F(P) = 1.636616.. ..

In 2013, Banks and Martin [2] proposed a related conjecture concerning the Erdds sum of primitive sets
with a fixed number of prime factors.

Conjecture 1.2. (Banks, Martin) Let Py, be the set of natural numbers with exactly k prime factors counted
with multiplicity and let F be the Erdds sum in the integers. Then

.7:(7)1) > .F(PQ) > ... > f(Pk) > f(Pk+1)....

Taken together with a theorem of Zhang [16], results of Bayless, Kinlaw, and Klyve [3| show that F(P;) >
F(P2) > F(Ps). Just this year, however, Lichtman [8] showed that the conjectured inequality fails to hold
for all k, and that F(Py) in fact attains a global minimum at k& = 6.

In this paper, we examine analogues of these conjectures for the function field Fy[z]. Here, the natural
parallel of the Erdés sum is

1
T = 2 rdega
which we conjectured in [7] is maximized by the set Z, C F4[z] of monic irreducible polynomials.

In Section 2, we estimate F(Z,) and show that it approaches %2 = 1.644930. .. as ¢ — oo. We then establish
effective bounds for the function field analogue of Mertens’ third theorem in Section 3, which we use to
compute an upper bound for F(A) over all primitive sets A C Fy[z] in Section 4. When 3 < ¢ < 19, we obtain
a bound of €7 just as in the integer case, and when ¢ > 19, we obtain a bound of e?~! + % = 1.800153.. ..
In the case where ¢ = 2, we show that F(A) < 1+ % = 1.890536.. ..
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In Sections 5 and 6, we consider the function field analogue of the Banks-Martin conjecture. Letting Zj, 4
be the set of monic polynomials in F,[z] with k irreducible factors, we demonstrate that the infinite chain
of inequalities

]:(Il,q) > ]:(12711) > L. > .F(I]%q) > ]:(Ik-i-l,q) -

fails to hold when ¢ = 2, 3, or 4. However, we show that for each k, there exists a g; such that
]:(Il)q) > .7:(1-27(1) > L > .F(I]c,q)

for all ¢ > g, and furthermore, that g, = O(k24F). We also present an approach to efficiently compute
F(Zx,q) with high precision, providing numerical evidence that the Banks-Martin conjecture in F,[z] may
hold in full generality when ¢ > 5.

For the remainder of this paper, we denote the degree of a polynomial f € F,[z] by deg f and write
|| f]| = q?&/ for the norm of f. Following the conventions we established in [7], we restrict our attention to
primitive subsets of monic polynomials and exclude the set {1} from consideration.

2. COUNTING IRREDUCIBLES IN F,[z]

We begin by evaluating the Erdds sum over the monic irreducibles Z, C IFy[z]. Letting mj(n) denote the
number of degree n irreducibles in Fg[z], we rewrite our sum as

F(I,) = Z ;7

n=1
The numerators of this sum can be expressed in terms of the Md&bius function p using Gauss’ formula
1 n
/ _ d
’/Tq(n) - ﬁzq 2 (8) )
dln
which allows us to obtain bounds on 7 (n) and F(Z,).

Proposition 2.1.

n n/2 n
g_(q)q < am < O
n q—1/ n n

Proof. The upper bound is a known result whose proof can be found in [11]. The lower bound is immediate
when n = 1, so we will consider the case where n > 1. We know from Gauss’ formula that

VAP L B o (2) - ¢ 1 0 (2)
n Trq(n) - n ndzq,u‘ d - n n dz QN d )
d<n/p’

where p’ is the smallest prime factor of n. This expression is at most

n/p’ n/p' =1 n/p’ n/p’ n n n
R R L W /1" —q\ (g NP1

TR P A it IO N ') R ,
n n = n n q—1 n n q—1 qg—1 n

which gives that

n n/2
m(n) > T <L> 4 O
n q—1/ n
Proposition 2.2.
2 1 2
oLl (—) < FE,) < T
6 qg—1 Va 6

where Lis(x) is the dilogarithm Lis(z) = Y 7o ]’;—: In particular, F(Z;) — %2 as q¢ — oo.
Proof. These bounds are a consequence of Proposition For the upper bound, we have

ooﬂ_/(n) 0o 1 9
Z ;q” = Zﬁ - %’

n=1 n=1

and for the lower bound, we have

o0 ’ 00 2
LSRN T G I D S S B SR I
ngn n? q—1) n2qn/? 6 g-—1 Va



As g — oo, Ligy (ﬁ) — 0, so the lower bound for F(Z,) converges to the upper bound. O

In the following proposition, we show that the value of F(Z,) increases monotonically with ¢, which
implies that F(Z,) is a lower bound on F(Z;) for any g. The lower bound obtained by computing this sum
(see Section 2.1) is strictly better than the lower bound in Proposition for all ¢ < 37.

Proposition 2.3. For any prime powers g1 < g2, F(Zq,) < F(Zg,).

Proof. The inequality can be verified computationally for ¢ = 2 and g2 = 3. To address the remaining cases,

’

we will show that each term ﬂr‘;(:) of F(Z,) is strictly increasing in ¢ when ¢ > 3. By Gauss’ formula, this is

q
1 da (n
()
d|n
is increasing in ¢q. The derivative of this expression with respect to g is
Q" Vg da® () —ng" T g ' e(G) X (d—n)a’u(y)
q2n - qn+1 :

equivalent to showing that

To show it is positive, we first note that Zdln(d— n)qd,u(g) is a polynomial in ¢ whose leading nonzero term

is (n— ﬁ)q"/pl, where p’ is the smallest prime factor of n. Since p(m) < 1 for all m, this polynomial can be
bounded below by

n/p’ —1

n ’

<n - /> '+ Z (d —n)q“.
p d=1

This expression in turn is at least

n/p —1 n/p'
, , -1
n— - Z ng® = n— P —n 7~V in
o et P q—1

s —1 1
= g (P - =) Lo 2

P q—1/ q—1 T -1
where the last inequality holds because 2 /p_/l - ﬁ is nonnegative for all p’ > 2 and ¢ > 3. It follows that
the derivative is positive, which means that F(Z,) is strictly increasing for ¢ > 3. |

2.1. Numerical note. Even though a closed formula for F(Z,;) seems elusive, it is surprisingly easy to
compute its value to very high precision for any fixed value of gq. Suppose we have computed a partial sum
of F(Z,),

a = n
n=1 nq
We estimate the remainder of this sum as
= ) & (1 L —mm)
— q _ n q
F(Z) = Sng = ) el > 2 e
n=N+1 n=N+1
n 1 0o q" - (n)
— 2) — _ n q 2
@-3 k- 3 (5 @
n=1 n=N+1
From Proposition [2.1] we have
n n/2
o< Tomm < (4) 5
n q—1 n
and so
00 @ i 00 1 —(N+1)/2 54— N/2
os > (B <y Ll <ty (Fon) <
n=N+1 n=ny1 "4 q
for ¢ > 2. Using this in gives the bounds
N N
1 5g N2 1
SN,q‘FC(?)—Zﬁ—T < F(Zy) < SN,q+C(2)—Zﬁ~
n=1 n=1



When ¢ = 2, taking N = 70, 000 is sufficient to compute the value of F(Zy) = 1.4676602238442289268 . ..
to over 10,000 digits accuracy in a few seconds, and this converges even faster for larger values of gq.

3. BOUNDS FOR THE MERTENS PRODUCT

In [7], as part of our proof that the Erdds sum converges for all primitive sets, we used the Sieve of
Erastosthenes to show that the density of multiples of f with no irreducible factors of smaller degree is

m I (o)

P€l,y
deg p<D(f)
where D(f) denotes the largest degree of an irreducible factor of f. We were then able to bound this
expression using an analogue of Mertens’ third theorem in function fields—a special case of Theorem 3 in |13].

() ~ ®

P€L,
deg p<n

where v = 0.577215 ... is the Euler-Mascheroni constant.

Theorem 3.1.

In order to obtain a numerical upper bound for F(A), we’ll need to establish more precise bounds for the
Mertens product . If we take the natural logarithm of this product, we obtain

n . 1 n . ) 1
;Wq(z)log (1— E> = —;ﬂ'q(l) <kz_1 W)

Below we have written out the first six terms of this summation. Notice that the sum of the constant terms
from each expression form a partial sum of the harmonic series, and that partial cancellation occurs in the
coeflicients of other powers of ¢. In particular, the sums for the coefficients of % are zero for 1 < j < 3; the
terms perfectly cancel out.

o0
O e 5 R e
2 00X _ _ _
-ﬂ;(2)10g(1—q%) = quk;k;% = 3+ 5%t am t st t oG T
3_ . X _ _
-W;(3)log(1—q%) = ngk;k;e,k = 3+ 0 + 55 + g5 + 0 + & +
42 X _
m@log(1-4) = S =+ 0+ gt 0 g 0+
s 9 B
mEoe(1-F) = T e = b4 0+ 0 4 0+ g4 g o
—7r’(6)101—i—Mil—l+0+o+1+1+L+
q ) c) = 6 o kTS 64 6t 64
In the following lemma, we show that for all n, this same cancellation occurs for each j € [1, L%H By
bounding the contribution from terms % with j > 3, we obtain bounds for ) m (i) log (1 - qi) in terms of

partial sums of the harmonic series.
Lemma 3.2.

1 "1
- - <
( 2(q—1)qW2J)Zi -

i=1

N 1
;w;(z) log (1 — ql>
Proof. To simplify our calculations, we define

vi(d) = " (8) i .
0 otherwise
so that our formula for 77 () can be written as

%quu (;) = j;qdvi(d)

dli



Substituting this expression for 7(¢) and expanding each logarithm as a Taylor series gives

Sertns(1-5)| = X (F ) (£ i)

X (vi(d) 1
< ik qik—d> : (4)
d=1k=1

i=1
Since d < ik for all terms in this triple sum, it can be written as a power series of the form Z;‘;O cj - % for
some coefficients c;. In particular, it will be the case that

n

1
¢ = Zﬂ Z p(r).

To see why this is true, note that the terms in (4]) which contribute to ¢; are exactly those for which
itk = j + d. Since v;(d) = 0 for all d > i, we can extend the sum over d to include values up to d = n.
Furthermore, because the sum has finitely many nonzero terms, we can interchange the order of summation

so that
n o0 n 1
SIS () - Ry (U )
i=1 d=1k=1 d=1k=1i=
For any fixed d, its contribution to c; is

Vi(d 1
SR = T = 5 X e = g X
‘ i,l? ik ]+d J+dz\(]+d) |J+d
zki:é:_d lk:{j:d i<n r<n/d

where we have made the substitution r = é and used the definition of v in the last equality. Summing over

all d gives us the desired expression for c;.

For the specific case of j =0,
"1 "1
D Y NTCES
d=1" r[1 d=1

Now consider the case in which j € [1, §]. If Tl# then # is an integer, which implies that d < j. It follows
that j +d < 2j < n, so r < & whenever r|ﬂ. As a result,

]

where we have used the fact that the sum of ,u(r) over all divisors of % equals zero. Hence we can rewrite
our expression as follows:

Z’ﬂ' ) log (1—)‘ ch - Z + Z cj~%. (5)

j=In/2]+1

Our final task will be to bound the last summation. To do so, observe that

j+d
ZM(T)‘ S Sq

res

whenever S is a subset of divisors of #. This follows from the fact that p(r) can only take on values of 1,
—1, or 0 for at most % different values of 7, and that the sum of j(r) over all divisors of 1-¢ + equals zero.
In particular, this holds when S is the subset of divisors that are at most 4, so

"1 j+d "1
< — L = —.
Zu(r)|_2j+d = 27
|5t d=1 =
r<n/d

n

1
Ci| = E S
|]| d:1]+d




It follows that

oo oo

Z cj-l, < Z

..
j J
j=lne)+r 4 j=ln/2)+1

> 1 1 |
S_Z fzﬁ: 2(q — 1)gln/2] Z::&

¢ = q—l

which, along with equation , implies that

(- i) St = [R5 < (v X5 o

=1
1 1
I (i-2L) <2
[Ipll e

P€l,
deg p<n

Proposition 3.3.

Proof. From Lemma [3.2] we have
1 1 1
Z qt ; 7 2(61 _ l)q”/2
For the harmonic number Y. | +, Pélya and Szergé [12] give a lower bound of
1 1
logn+~v+ —

o2n  8n?’
which we can substitute into our inequality to obtain

Z i)log (1 L) < 1o L, 1, ! logn + 7+ — !
0 - = —logn—-v—-—+—+—"7-—= n i
& q) ~ & T 90 T 8n2 2(q — 1)q"/? & 7T T 8n2
We clalm that in all but finitely many cases,
1

1 1 1

%‘F 8?—*— 72(q_1)qn/2 (logn—i—v—i— % - 877,2) < 0.

First consider the case of ¢ = 3. It can be calculated that the derivative of the expression with respect
to n is negative for all n > 3, so the expression is decreasing in n. The inequality can then be verified
computationally for n < 3, so the inequality holds for all n when ¢ = 3. Furthermore, the expression is
decreasing in ¢, so the fact that the inequality holds for ¢ = 3 implies that it holds for all ¢ > 3. Setting
q = 2 and taking the derivative with respect to n, it can be shown that the inequality also holds for ¢ = 2
when n > 10. Hence in all of these cases

1
ZT( log<1—qi> < —logn — 7,

and so
0 () <
AL U)o
deg p<n
The remaining cases in which ¢ = 2 and n < 9 can be verified computationally to complete the proof. O

Proposition 3.4. FEzcept in the case ¢ =2 and n =1,

AUl T e
deg p<n

Proof. Once again from Lemma[3.2] we have

_Z” log(l_ql) = —(1+2( an/zj)Z%

i=1
From Young [15], we know that >;" ; 1 is bounded above by
1

log(n+1) +v— m,
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so our inequality becomes

Zn:’(')l (1 i)> log(n + 1) — 7+ — ! log(n + 1) + !
z':17rqz 0og i) = og(n Y m+2  2(q— L)gln/2 og(n Y mia)

If we can show that the sum of the last two terms is nonnegative, then we will have

Zw;(z) log (1 — q’) > —log(n+1)—7,
i=1

upon which exponentiating both sides gives the desired inequality.
We first prove this is true for ¢ > 4. Our expression

1 1

2n+2  2(¢g-—1)

2n—|—2>

is increasing with respect to g, so it suffices to consider the case when g = 4. Because 4L7/2] > 271 we only
need to demonstrate that

J0772] <log(n +1)+v—

L (log(n+1)+ < 1
_— (0] — .
3.on \ 08" TTomr2) < omt2

This inequality can be computationally verified for n = 1. For n > 2, we have log(n + 1) + v —
it suffices to show

_1

Tz < M, SO

n 1
3-2n — 2n+ 2’
or equivalently, 0 < 3-2" —2n? — 2n. The right hand side equals zero when n = 2 or n = 3, and its derivative
3-2"log2 — 4n + 2 is positive for n > 3, so the inequality is true for all n when ¢ > 4.
Similar analytic arguments can be used to show that the inequality is true for ¢ = 3 when n > 8 and for
q = 2 when n > 18, and the remaining cases can be checked through direct computation. (|

4. AN UPPER BOUND FOR THE ERDOS SUM

Our bounds on the Mertens product are particularly well-suited for bounding subsets of a primitive set
A whose members share a smallest irreducible common factor. Formally speaking, we choose an arbitrary
ordering of Z, that respects increasing degree and define p(f) and P(f) to be the monic irreducible factor
of f which has least and greatest index according to this ordering, respectively. Then, we let A;, ={acA:
p(a) = p} and note that {A}} ez, is a partition of A. Because the Erd6s sum converges for any primitive
set A [7], we can obtain an upper bound for F(A) by summing together upper bounds for F(Aj) over all
monic irreducibles p.

When p ¢ A, we can bound F(A})) by adapting an argument that Lichtman and Pomerance [9] developed
for the integer case. We let g(a) represent the asymptotic density of monic multiples of a all of whose factors
have degree at least that of P(a), whose formula is given by

1 1
gla) = Tall H (1—m)~

ez,
f<P(a)

We also define d(f) = degp(f) and D(f) = deg P(f). Then we have the following bound for F(A},):
Proposition 4.1. Let A C Fy[x] be primitive and p ¢ A be irreducible. Unless ¢ =2 and degp =1,
F(4,) < e'g(p).
Proof. For each a € A;, Proposition gives
1 1 1 1 1
gla) = — 1——) > — 1——) > .
@=mr 0 Cmp) > @ I O 2 So@rom

fel, fez,
f<P(a) deg f<D(a)

Note that this holds even in the case ¢ = 2, since degp > 1 implies D(a) > 1. When p ¢ A, we have
dega > D(a) + 1, so
1 1
> ———— = —F(a).
9(a) e7||al| deg a ev (a)
7



This gives us the preliminary upper bound

F(A,) = Z Fla) < € Z g(a).
a€A], a€A],
To bound this last summation, note that A, C A is primitive. Thus if we define S, = {fa : p(f) > P(a)}
for each a € A}, we see that the S, must be pairwise disjoint. Because S, consists of the monic multiples of a
whose other irreducible factors have index at least P(a), the asymptotic density of S, is g(a). S, is contained

in the set of all polynomials f such that p(f) = p(a) = p, which has asymptotic density g(p). Because the
S, are disjoint,

It follows that F(Aj}) < e"g(p), as desired. O

When degp = 1, it is possible to obtain bounds for F(A]) that are tighter than those which would be
obtained by applying Proposition directly. In order to do so, we will partition each A, into subsets At
which consist of elements of A), that are exactly divisible by ¢.

Proposition 4.2. Let t be a product of degree 1 irreducibles and let A be primitive. Define A = {a € A :
tla and d(a/t) > 2}. Ift ¢ A,

e
F(AY) < el Z 9(p)-
PELHN\A
degp>1

Proof. Let Bt = {a/t : a € A'}. Note that B! is primitive, and furthermore that if ¢t ¢ A, then B # {1}.
Because t ¢ A, we have

F(AY) = Y F(t-(BY))
PEIq
degp>1

where set multiplication is defined in the natural way: f-S = {f-s:s € S}. If p ¢ (B")], then Proposition
gives us the strict inequality in

ity o TUBY)_ eg(p)
FEER) < = T

If p € (B);, then F(t - (B*);) = F(tp). Using Proposition

1 1 ev 1 e’g(p)
Fitp) = < < (1-777) < -
ltpl|degtp = |[tpll(degp+1) — [[tpl] fgq /1] 121l
deg f<degp

Note that if F((B*);) # 0 then A contains nontrivial multiples of p and thus p ¢ A. It follows that

e’y
> F-(BY)) < T > 9. O
pEIq pEZq\A
degp>1 degp>1

By summing over all possible ¢, we can establish an upper bound for 3. .7 .., F(4}). While our
initial bound will depend on the proportion of irreducibles not contained in A, we will later determine for
which proportions this bound is maximized to obtain an upper bound independent of this quantity. Because
the proof depends on Proposition [I.I] which does not always apply when ¢ = 2, we will first establish the
result for ¢ > 3 and then consider the case ¢ = 2 separately.

Lemma 4.3. Let «a be the proportion of degree 1 irreducibles not contained in A. When q > 3,

SOFA) < (l-a)+e Y g(p)+67<1;>q<(1;)aqal>. (6)

pEL, PELHNA
deg p=1 degp>1
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Proof. Let K be the set of degree 1 irreducibles not contained in A, and note that |K| = aq. Let ¢ denote
a product of degree 1 irreducibles as before. If ¢ is a multiple of a degree 1 irreducible contained in A, then
A? = () and so F(A?) = 0. Hence

Yooy = > Fi+ > FAHY+ Y FAh+ > F),
tgA

PEZ, teA ¢ tgAP(t)CK teA,P(t)CK
deg p=1 degt=1 degt=1 degt>1 degt>1

where P(t) denotes the set of irreducible factors of t. The first sum equals

Z 1 le_%

teA q q
degt=1

and we can use Proposition [£:2] to bound the second sum as

SOFAY < > ﬁ > glp) = ac” > g

tgA t¢A €T, \A €T, \A
dcgtzl nget:l ﬁcg?)ll gcgi)ll
Similarly, we can bound the third sum as
e e
Yo OFAH) < Y T Yoy < D) T > glp).
t¢ A;P(t)CK t¢ A;P(t)CK PEZHNA t¢ A;P(t)CK pEL,
degt>1 degt>1 degp>1 degt>1 degp>1

Finally, when ¢ > 3 and degt > 1, we can deduce that

1 1 g 1\1
< < e(l—) : (7)
[[t||degt = 2|Jt[] |[#]] q

q
where the last inequality holds because (1 — %) is increasing with ¢ and e” (1 — %)3 = 0.52772... > %

This allows us to bound the final sum as
e 1\1
S oros ¥ m(eg)

teA,P(t)CK teA,P(t)CK
degt>1 degt>1

upon which summing together our four bounds gives

> R < (-a)rad Yo+ Y oo Y )+ Y ||||<1‘;> |

pEZ, pEZLHNA tgAP(t)CK pEL, teA,P(t)CK
deg p=1 degp>1 degt>1 degp>1 degt>1

To simplify the third term of this expression, note that

1 q

> g(p)=;§(l—;>i=1 w :1—<1—;)q.

pET, i=0 q (1 - %) -1

deg p=1
Because every polynomial is divisible by an irreducible, ZPGIq g(p) = 1, which means

dooglp) = 1= > glp) = (1—1)q~

PELy PEL, q
degp>1 deg p=1
Using this formula for >~ ,ez, ¢(p) and combining the last two terms of the expression, our bound becomes
degp>1
e’ 1\
Z F(A,) < (1—-a)+ae” Z g(p) + Z T (1—) .
pEZ, pET,\A Pt)CK 4
deg p=1 degp>1 degt>1

We can evaluate the sum of reciprocals in the last term using an Euler-like product expansion because F,[z]
is a unique factorization domain (so that every ¢ is a product of exactly one combination of elements of K):

> o= (1+1+1+ >aq°‘q1 = (11)aqa1
|I¢] q ¢ q q

degt>1
P(t)CK

9



Substituting this into our inequality above gives the desired bound. O

Proposition 4.4. When q > 3,

S R < max{l,e'v S )+ (1—2(1_;)q) }

peZ, PEZ\A
deg p=1 degp>1

Proof. We will show that the upper bound in Lemma [4.3|is maximized on [0,1] at @ = 0 or @ = 1. Fix the
irreducible polynomials of degree at least 2 contained in A and define

C = > g

pEZNA
degp>1

Recall from Lemma [£.3] that

1 q
C= > g < Zg(p)—<1—>-
PEZHNA pEL, q
degp>1 degp>1

Thus C is independent of o and bounded between 0 and % Hence, we can treat C' as a constant and prove
the claim for all possible values of C. Taking the second derivative of

(1—a)+Cae’ + ¢ <1—;>q<<1_;)_aq_a_1>,

the upper bound in @, with respect to « gives

(0 )

This quantity is always positive, so our upper bound is maximized at an endpoint of [0,1]. When o = 0, it
equals 1, and when a = 1, it equals

oo (3 (-3

SO D pe7, deg p—1 7 (Ap) is bounded above by the greater of these two values. O

By adding the upper bounds for }"(A;) with degp > 1 to the upper bound obtained in Proposition
we arrive at a final upper bound for our Erdés sum when ¢ > 3.

Theorem 4.5. For 3 < ¢ <19 we have F(A) <e¥ =1.78107... and for ¢ > 19 we have

1\* 1 -9
F(A) < 1+¢ (1—) + < 1+t = 1.80015....
W i) * 2 Thlder+ Didesn) 6
degp>1

Proof. We can bound F(A) by summing over disjoint subsets of A, just as we did in the previous proposition:

FA) = > FA)+ > FA)+ > Flp).

PEL, PEZHN\A pEZ NA
deg p=1 degp>1 degp>1
< > FA)+e D g+ D Flp). (8)
PEL, pELLN\A peEZZNA
deg p=1 degp>1 degp>1

Here, we have used Proposition [£.1] for the second term. If the first sum in the bound is greater than 1, then
we can bound it using Proposition [£.4] as

1 q
S R <o Y g(p>+ev<12<1> )
pPEL, PELLH\A ?
deg p=1 degp>1

10



We then bound the third sum using Proposition [3.4] as

1 1
2 T = D ey S 2 [pldesrt D)

pELGNA pELLNA pELNA
degp>1 degp>1 degp>1

v 1

<2 % & I (o)

perma Pl 27 /1]
degp>1 deg f<degp

< 2e7 Z g(p)-

peEZ,NA
degp>1

Now, inserting both of these estimates and combining all three sums of ,

F(A) < e (1-2(1—3})3 +2¢7 > g(p)

pEL,
degp>1

1\? 1\*
Se"(l—Q(l—))—l—Qe’*(l—) = €.
q q

If instead, the first sum of is at most 1, then we treat the third sum in that expression more delicately.
Since degp > 1, we can bound the terms of this last sum with Proposition [3.4

1 1 degp+1
F(p) = < :
#) = TpTdegp = Tpll(dcep T D) degp
eV 1 1
< 1—— )+
AL ( ||f||> Tpl(degp + D(dep)

feL,
deg f<degp

1
degp +1)(degp)

Inserting this bound in the third sum of , combining it with the second sum, and applying Proposition
[44] to the first sum, we have

< <9+

1
F(A) < 1+4¢€” Z g(p) + Z
22 Tlpll{degp+ 1)(degp)
degp>1 deg p>1
<1+eV(1—1)q+ > ! (9)
- q 57, lIpll(degp+1)(degp)
degp>1

By numerically computing the sum over irreducible polynomials, we find that this bound is less than e” for
all ¢ < 19. To obtain a bound independent of ¢, we can bound the third sum above as

o0

1 >, 7(n 1 2_ 9
> pl[(degp + D(degp) Zn(nil)) w S Zn2(n+1) = - 6
PEZ, p &P &p n=2 q n=2

degp>1

q
and note that (1 — %) increases with g to é, which gives

2 _
FA) < 1414~ - % 1800153, O

Our proof above fails when ¢ = 2 because the inequality in Lemma no longer holds. However, it
becomes true if we introduce a correction factor of 2/e” = 1.122918.. .:

1 1 2 eV< 1)2
< - 2. (1-2) .
|[t]] deg t 2|[t]] ev |[t]] 2

By modifying the propositions above to take this correction factor into account, we can obtain an upper
bound for the Erdés sum in the case ¢ = 2.

11



Theorem 4.6. When q =2,
¥
F(A) < 145 = 1.890536....

Proof. Because we are introducing a factor of 2/e” in the right hand side of

1 < eY (1 1)(]
[l degt = |[¢]] a)’

our upper bound from Lemma [£:3] becomes

= sy < 0-oea £ gorea(i- ) ((-2) o)

PEZ, PELN\A 4
deg p=1 degp>1

The right hand expression is still convex as a function of a by the same reasoning as Proposition [£.4] so

> F4) < maX{l,e” > g(p)+2<1—2<1—;>2> } (10)

pels peI\A
degp=1 degp>1
If 7 pez, F(A}) <1, then the same argument as in Theorem when this sum is bounded by 1 applies,
deg p=1
and we can bound
f(A)<1+eV<1—1>2+ > L < ¢
- 2 |Ipl|(degp + 1)(deg p)
pEL>
degp>1

as in @ Otherwise, inserting the second bound in into and following as above yields

N 1\? ) 1\2 v .
F(A) < 2 12(12) + 2 (12) = 1+

5. THE BANKS-MARTIN INEQUALITY

Recall that the analogue of the Banks-Martin conjecture for Fy[z] states that
F(Tig) > FTog) > F(Isg)- -
where Zj, , represents the set of monic polynomials in F,[z] with & irreducible factors counted with multi-
plicity. Analogously to the observation of Lichtman [8], we find that the conjecture is false for ¢ = 2, 3, and 4
by direct numerical computation in Section [6.3] However, in this section we will show that for each k, there

exists g such that the inequality holds up to F(Zy 4) for all ¢ > ¢, and we will establish an upper bound
on the size of gy.

5.1. Bounds for 7/, (n) and m;(n). Let m(n) denote the number of monic polynomials of degree n in
F,[x] with %k irreducible divisors including multiplicity. Since

1 =, 7 (n)
7T = S k
FTha) = 2. Tlldega = 2= ngr

a€ly 4 n=1

the growth of F(Zj, ) is determined by 7 (n). Similarly, if we let Z;; | = {f € T4 : f squarefree} and 7} (n)
denote the number of squarefree monics of degree n with k irreducible divisors, then the growth of F (I;ck q)
is determined by mj(n). Thus we can obtain bounds for F(Zy ) and f(Zj ,) by bounding their respective
counting functions . (n) and 7% (n).

Proposition 5.1.

" 1 , , ,
mp(n) < 7l E 7o (J1) 7 (72) - - 7 (i)
R S Y
Jit...+ik=n

Proof. m} counts polynomials of the form pips...pr, where the p; are distinct irreducibles with degrees j;

such that jy + ...+ jx = n. There are 7 (j1)7,(j2) ... 7, (jx) ways to choose k irreducibles with respective

degrees ji,...Jjr. However, this product includes in its count some non-squarefree polynomials, and for the

polynomials that are squarefree, there are k! different ways we can order them to obtain the same product.

Hence, summing over all tuples ji, ... ji that sum to n and dividing by k! gives an upper bound for 7} (n). O
12



Proposition 5.2.

1 . . .
m(n) > 7l E 7o (J1) 7 (72) - - - 75 (i)
R SR 8
Jit...+ik=n

Proof. We can write each polynomial counted by 7. (n) as pips...pr, where the p; are not necessarily
distnct irreducibles. There are 7 (j1)m;(j2) . . . 7, (jx) Ways to choose the irreducibles py, ..., px with degrees
J1s - Jk, and these irreducibles can be ordered in k! ways. However, if not all irreducibles are distinct, then
some reorderings will result in the same polynomial, meaning that dividing by k! undercounts the total
number of polynomials. Summing over tuples ji, ... ji that sum to n gives a lower bound for 7 (n). O

5.2. An Upper Bound for F(Zy ). In order to obtain an upper bound for F(Zj ,), we will first bound
F(Z;; ) using our bounds for 7} (n). We will use the following result of Mordell, stated in greater generality
than is needed here, as it will be useful for the computations in Section [6.2]

Theorem 5.3 (Mordell [10]). For any positive integer k and a > —k we have

1 l—a (1-a)(2-a)
= Kk!l'1 11
\< Z nlng--%k(nl+n2+-~-—|—nk+a) ( + 112k+1 + 213k+1 + ( )
SN1,M2,5..NE
> (=1 fa-—-1
= k! —_—

where the sum ranges over all k-tuples of positive integers.

Remark 5.4. Note that when a = 0, the expression on the right in is equal to k!((k + 1), where
((s) =>°.°, 1/n is the Riemann zeta function. When a is a positive integer, the right hand sum is finite,
so the result is a rational number.

Proposition 5.5.
F(Zi ) < C(k+1).

Proof. By Proposition we have

m) < o Y GGG

J1ssk
Jit...tik=n
Recalling that 7 (n) < % we see that
o) = L < gy X BRI < gS y
Rl ngn = k! ng" T k! — njije ... Jjk
n=1 = J1---Jk n=1  ji...Jk
Jl+ Hjk=n g1t tie=n
By Theorem this right hand sum equals ((k 4 1), giving us the desired result. O

Proposition 5.6. For k > 3,
F(Tey) < C(k+1)+log <qq1> Clk —1).

Proof. Proposition gives us an upper bound for the Erdés sum over squarefree elements of 7, 4; all that
remains is to consider the contribution from the non-squarefree terms, which are polynomials of the form
p?pa ... pr—1, where the p; are not necessarily distinct irreducibles. If we let j; = deg p;, then there are at most
7o (j1)74(j2) - . 7, (jr—1) polynomials pips ... pr_1 whose factors have the corresponding degrees ji, ... jr_1.
Hence our sum over non-squarefree terms is bounded above by

ma (1) - - 74 (r—1) < T 1

, Z (21 + o+ ..+ Jr—1)g? et Ttk e~ gija Je—1(d1 o F Jrm1)gh
J1eeJk—1 J1e-Jk—1

1 1
;jlqjl Z Jo Je—1(J2+ ..+ Jk—1)

J2-Jk—1

~ log (qi’l) CUi—1),

13
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where once again we have used Theorem to obtain the last equality. Note that the second line requires
k > 3. Combining our bounds for the squarefree and non-squarefree elements in 7 , yields a total upper
bound of

C(k+1) +log <qql> Ck—1).
O

Since 1og( 7) decreases to zero as ¢ tends to infinity, this upper bound gets arbitrarily close to ((k + 1)
whenever ( (k — 1) converges. However, we will need a separate bound for k = 2.

Proposition 5.7.

F(Tog) < C(3) + 5l (;)

where Lis(z) = > 72, i—z is the dilogarithm function.

Proof. The only elements in 75 , that are not squarefree are the squares of irreducibles, which contribute

= T (n) <1 1. (1
2 ||f2||deg<f2> B ;%q% : z::wfzn R (q)

fez,

to the upper bound. Since the Erdés sum over the squarefrees is bounded above by ((3) by Proposition

F(I2q) = FZ30) + f(T2g\I3,) < CO3)+ %Lig (2) )

O

5.3. A Lower Bound for F(Z ,). Having established an upper bound for F(Zj ), we now find a lower
bound for the same sum.

Proposition 5.8.

Expanding this out using the lower bound from Proposition [2.1] gives

Ik Z Z (q.jl _ q%!l . qjl/Q)W(qjk _ q%l . qjk/Q)
»q = ‘ B T .
e Ljit-. +ji=n ML Jkd

Factoring out ¢’ from each term in the numerator, the right hand sum becomes

(1— -1 .q9/?2)..(1- e q /2

n=1ji+..+jr=n Ji--Jk

As j; > 1 for all i, we can bound the sum below by

(1— -4 .q-1/2)k

1 & -} 1 & 1
EZ Z Zjl...jk - (1 —1> I?Z:: Z+: Nnj1---Jk

n=1ji+...4jr=n
k
= (1— ﬁ) C(k+1)

-1

)

where the last step uses Theorem O
14



5.4. The Banks-Martin Inequality for Fixed k. The upper and lower bounds for F(Z ,) established
in Propositions and both approach ((k + 1) as ¢ increases. Because ((n) > ((n + 1), it follows that
for each k € N, there exists g such that the following chain of inequalities holds in F,[x] for all ¢ > gs:

F(Tig) > FZog) > .. > F(Ii,)-

In the following theorem, we establish how large g, must be in order to guarantee that this chain of
inequalities will hold.

Theorem 5.9. For each k € N, there exists an integer q, = O(k24k) such that
]:(Il,q) > I(Ig’q) > .. > .F(Ik’q)
for all ¢ > qi. In particular, we have that qi < 4.03 (k — 1) 4% ((k)2.

Proof. We first address the case k = 2, which must be handled separately because the bounds in Propositions
and [5.8 do not apply. Instead, we can use Propositions [2.2] and which, along with the fact that

2 q . 1 1. 1
s rte(g) > @ g ()

for all ¢ > 11, are sufficient to prove that F(Z; 4) > F(Z3,4) for all such g.
Now fix a natural number £ > 3. In order to find a value of ¢ such that F(Zy_1 ) > F(Zy ) for all
k' < k, it suffices to find g such that

(1—\/§>k11<(l~:’) > (K +1) +log (%)g(/{/—n

qg—1
for all ¥’ < k because of Propositions and Equivalently, we need

(1 - ﬂ)kllg(k’) — (K +1) — log (L)g(k’ ~1) > 0.

q—1 q—1
It is not too difficult to show that the left hand expression is increasing in ¢, which implies that if the
inequality holds for g then it holds for all ¢ > ¢x. It is more challenging to show that the expression is
decreasing with respect to k’, but this can be accomplished for ¢ > 7 and k' > 4 using bounds on the forward
difference of the Riemann zeta function, as found in [1]. Hence if ¢ > 7 satisfies the inequality when k' = k,
it will satisfy the inequality for all 4 < k&’ < k. In fact, because the inequality holds when k& = 3 and ¢ = 413,
and we have already shown that F(Z; 4) > F(Zs,,) for all ¢ > 11, the inequality holding for &' = k implies
that it holds for all ¥ < k as long as ¢ > 413.
Thus our task is as follows: given any k& > 4, we must find a value of ¢ such that

<1\/‘7)k1g(k)<(k+1)1og( L)etk-1) > 0.

q—1 q-
Bounding the coefficient of ¢(k) above by (1 — (k — 1)%), we see it is sufficient to show that

_ YL 0w (— N e —
(€)= €Ok 1)) = (= 1) 5 ¢(k) — log (L )<k = 1) > 0.
From a special case of the principal result of |1, we know that
Ck)—C(k+1) > SR

Using this and the bound log (qﬁ—l) < q_%, this reduces to showing that

1 Va 1
ok+1 7(k*1)q_71C(k)*q_71§(k*1) > 0.

Clearing out the denominators, we find the equivalent statement

(= 1) = 251k = 1)C(k) G — 2 ¢k = 1) > 0.
Letting a = 2""1¢(k — 1) + 1 and b = (k — 1)2""! ((k), we need that ¢ — b,/g — a > 0. By the quadratic
formula, this inequality will be true for any

‘> VAaab? + b* + 2a + b?
> 5 )
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Because we seek an upper bound for g, we can define the constant 7 to equal a/b? for k = 4. Because a/b?

decreases exponentially in &, this means 4ab® < 4nb* and 2a < 2¢b? for all k > 4. Explicitly, n = ;Zﬁ% =

0.00365.... Then

g <

\/Anbt + b4 + 2nb? + b2 b2
il 5 " - (1+2n+~/1+4n)

)
— (k- 1)24%¢(k)? - 2(1 +o+ /14 477)

will also be sufficient. The fact that (k)2 = O(1) gives us that g, = O(k?4%). The constant evaluates to
4.02919... < 4.03, which gives us the rest of the theorem. O

6. COMPUTATION OF F(Zy q)

As over the integers, the partial sums of F(Zj ) converge very slowly once k > 2. While it is possible
to compute these sums using the technique developed in [8] for the sums over the integers with k prime
factors, we develop a new method for estimating the size of the tails of these sums after precomputing the
counts of polynomials having at most k factors, all less than some degree N. Experimentally, this method
is able to compute the values of these sums much faster and with greater precision. The key idea will be to
use the more general form of Theorem [5.3] We start with a formula for computing the number of “smooth”
polynomials (smooth meaning that all of the divisors have degree smaller than some fixed bound) with a
fixed number of divisors.

6.1. Smooth polynomials with & irreducible factors. Let \Ij;c,q (n,m) denote the count of monic poly-
nomials of degree n with exactly k irreducible factors all of degree at most m.

Theorem 6.1. We can compute W) (n, N) from the values of 7'(i) by the formula

m .
Li+ml(j)—1
oo =3 (O,
l1420a+...4+mly=n j=1 J
Aot ALy =k

where each ¢; is a nonnegative integer.

Proof. Fix n, k and m, and group the polynomials of degree n with k irreducible factors of degree at most m
according to the multiplicities of the degrees of their factors. That is, for any polynomial f we define its class
by the sequence {¢;}, where ¢; := #{p € 7 : p|f,degp = j}. Conversely, each sequence of {/,} defines a class
of polynomials, which is included in our count if and only if {¢;} satisfy Z;nzl ¢; =k and Z;nzl Jjl; =n.
Now it remains to count the number of polynomials in each such class. There are 7 (j) monic irreducible
polynomials of degree j, and we need to choose ¢; of them with repetition, where order does not matter.
The number of ways to select ¢; such irreducible polynomials of degree j with the potential for repetition is

(eﬁﬂél _(j )71). Multiplying these terms then gives the number of polynomials contained in each class. O
J

6.2. Effective computation of F(Z ,). We can expand on the idea of Section 2.1 to obtain an algorithm
which can rapidly compute the value of F(Zy 4) for any g and k. The key idea is to use the full generality of
Theorem [5.3] to estimate the size of the tail after approximating with a partial sum.

In this case, for a fixed N the values of 7 (n) are computed for all n < N. Let d(f), D(f) and Q(f)
denote, as before, the degrees of the smallest irreducible factor of f, the degree of the largest irreducible

factor of f and the total number of irreducible factors of f respectively. We then write

FTea) = X Thideat = 2 Tildef 2o TrTdest 12
(Zk,q) ez |Ifll deg f & Nflldesf ™ & [Iflldeg f (12)
Y D(f)<N D(f)>N

The first sum above is computed exactly, using the precomputed values of 77(’1(71), as

1 vy ,(n,N)
SkNa = D TAAmT S Q. o
ez Iflldeg f L=\ ndg"
D(f)<N

where the value of \Ifﬁc q(n, N) is computed using Theorem
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The second sum will be estimated using a combination of the precomputed values and estimates for the
tail using the “Mordell Sum”

1
M(k,N = ’ 13
() N<mzn;z nk.nlnz"'nk(n1+"2+"'+nk+a) "

Note that when N = 1, the value of M (k, 1, a) is given by Theorem as

> (=1 fa—1
M(k,1,a) = k'ZM( . )

which for all @ > 0 will either be a rational number or a multiple of ((k+1). We can then recursively compute
values of this sum for larger values of N using the recurrence

M(k—1.N ~La+t(N-1)
N -1
k

& ()M (k—i,N — La+i(N — 1))
> (N-1) ’

M(k,N,a) = M(k,N —1,a) —

=0

which is obtained using an inclusion-exclusion argument over sums where the least allowed term is (N — 1).
We start by obtaining an upper bound for the rightmost sum in . We rewrite this sum as follows,
where Z/ is used to denote that the innermost sum is evaluated over squarefree polynomials.

1 k / 1 1
2 (fdef = & 2 2 Tigldwrst 2 Tilder

f€Tk,q =1 f€Zy_i,q 9€ZLiq fE€TL 4
D(f)>N D(f)<Nd(g)>N P>|f, pEZ,
degp>N
k /
v —17 (TL, N) / 1 1
=X X e Y fderint > s Y
i=1 n<(k—i)N FETi F€Tn.q
d(f)>N P°|f, pEZ,
degp>N

Consider the left hand sum above. By the same argument as in the proof of Proposition [5.1} we can bound
the innermost sum over squarefree polynomials by

' 1 1 o (1) (G2) - - - g (i)
2 I7deg(f) +n) = i 2 @RI (G o e+ i )

f€Tiq C N1,
a(f)>N
J1 gJ2 Ji
1 27T i o e . ase .
N (Jrjz -+ Ji) (1 +ja + -+ ji + 1)
<Ly ! Ly N+ 1,0, (15)
i . 3 3 . A = = 1, ,n).
- (Jrjz- - Ji)(Jr +j2 + - +ji +n) i!

" N<G1,edi

Here we have used again Proposition to obtain an upper bound for 7’(j). We then bound the rightmost
sum of over “squarefull” polynomials by

1 1 1
2 fews < 2 @ 2o s

f€Lk,q PELy FELK—2,
P2\ f, pEZL, degp>N
deg p>N
7 (n) 1 2 2
= F(Tr-24) 5 < 2 — < < .
! N;l gn NZ@ ng" ~ N¢Vt'(1-1/q) = NgV
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Using this and in , we get the bound

k
1 1 2
- < . i -
E s f = g g i!qn\I]k—l»q(n’ N)M(i,N +1,n) + Ng¥

fE€Th.q i=1 n<(i—1)N
D(f)>N
2
= RkJ\/',q + NqN. (16)

We can similarly get a lower bound. We start by writing

1
2 I flldeg f Z IDEDD ||fg||degfg

f€Thq i=1 f€Ty—i,q 9€Ti,q
D(f)>N (f)SN d(9)>N

_ i Z Wi, q(na N) Z 1
i=1 n<(k—i)N q 9ETh.q llgl|(deg g + n)
d(g)>N

k I /(s /(s ! (
v (n,N)1 T T oo (s
D S I e
=1 n<(h—i)N q T N<rds q J1 T J2 Ji
This time we don’t restrict to squarefree polynomials, and the argument for the lower bound is the same as

that of Proposition [5.2] We use Proposition [2.I] to bound this innermost sum from below as

Z o (1) (J2) - - g (di) < Z (¢ — = g ?) . (¢ — = - q7i/?)
N iy q91+az+ “+Jji (]1 +jo+ -4+ n) - N qJ1+Jz+ +yz]1 jk(jl + it g+ n)
(L= gt gl = g5 g7/

J1-Jir+je+--+Jji+n)

N<j1,--,Ji
_j_49 . —N/2
1 to1 4

g1 di(ji e 4o+ di )

= (1 - zil . qN/2) M(i, N + 1,n). (18)
q

Inserting this in gives

1 k igt—N/? . |
Z m = Z(l_ 1 ) Z M k_i7q(n7N)M(laN+1an)

f€Tk,q n<(i—1)N
D(f)>N

1-N/2 K v . (n, N)M(z N+1 n)

q k—i,q
B q—lZ Z (1 —1)lg

=1 n<(i—1)N

Thus we can approximate F(Zy,,) ~ Sk,n,q + Rk n,q, With the effective bounds

gl N/2 U, (n,N)M(i,N +1,n) 9
iq
Z > G—1)lg" < F(Zig) = Seng — Binvg < ¥ (19)

i=1 n<(i—1)N

6.3. Numerical Computations. Code was written in C++ to compute the bounds in using MPFR
for multiple-precision floating-point computations with correct rounding. Using N = 80, we have computed
the values of F(Zy, ,) for all k < 64 and 2 < ¢ < 64 to at least ten decimal places, and we have computed
various special cases with more accuracy to higher values of k. The results for ¢ < 7 are documented in the
tables of Appendix [6.3]

From these computations we find that the analogue of the Banks-Martin conjecture is false for ¢ = 2, 3,
and 4. In particular, we see that the sequence F(Zj, 2) has a local minimum at k = 4 of F(Z4,2) = 0.956237 .. ..
Similarly, F(Z, 3) has a local minimum at k = 6 of F(Zg 3) = 0.994968 ... and F(Zj 4) has a local minimum
at k=9 of F(Zy4) =0.999781.. ..

18



It seems highly likely that each of these values is in fact a global minimum, since the values appear to
increase monotonically to 1 as k — oco. In fact, it appears that 1 — F(Zy,,) = O(27F) in each case. This
agrees with the observations of Lichtman in the integers, where a global minimum in the sum F(Py) was
observed at k = 6, with similar convergence to 1 as k — oo [§].

Surprisingly for ¢ > 5, the behaviour appears to be quite different, with the numerical evidence suggesting
that the values of F(Z; ,) are monotonically decreasing to 1 as k — oo. Again we see the the same O(27F)
convergence, just from above. For ¢ = 5 we have verified that

]:(Ik75) > .F(Ik+175) > 1

for all k& < 100. Based on this evidence, we conjecture that the analogue of the Banks-Martin conjecture over
[F4[2] is still true in these cases.

Conjecture 6.2. For each q > 5 the inequalities
.F(Il,q) > f(Iqu) > .. > .F(Ikyq) > f(IkJrl’q) C..

hold for all positive integers k.
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F(Zy,2)

APPENDIX A. NUMERICAL DATA ON F(Zj ,)

F(Tk,3)

F(Zr,4)

F(Zk,s)

F(Zy,7)

© 00O Tk WN |3

1.4676602238442289268
1.0644425954143168595
0.9755638525263773555
0.9562373433151932108
0.9581408226316153830
0.9661285846774159333
0.9747368549520022143
0.9820875563671306239
0.9877477647269600411
0.9918478580517178761
0.9946958995719092591
0.9966129963802004602
0.9978716414731367847
0.9986811586590295149
0.9991928200040364980
0.9995113928362548792
0.9997071495459197712
0.9998260439229729488
0.9998975071335135411
0.9999400604052216966
0.9999651849121454024
0.9999799048973557495
0.9999884683698132380
0.9999934180456298710
0.9999962619151749007
0.9999978868847903109
0.9999988106438072540
0.9999993332889212801
0.9999996276842568036
0.9999997928264723852
0.9999998851056604170
0.9999999364831266058
0.9999999649907064879
0.9999999807578865298
0.9999999894521671497
1 — 5.76734033 x 10~°

1 — 3.14590853 x 10~°

1 —1.71209148 x 10~°

1 —9.29751061 x 1010
1 — 5.03860521 x 1010
1 — 2.72520970 x 1010
1 —1.47121001 x 10~ 1°
1 —7.92813803 x 10~ 1!
1 — 4.26504673 x 101!
1 — 2.29068075 x 101!
1 — 1.22835430 x 101!
1 — 6.57702289 x 1012
1 —3.51648112 x 10~ 2
1 —1.87752411 x 10~ %2
1 —1.00111662 x 10~ 12
1 —5.33123741 x 10713
1 — 2.83554554 x 10713
1 — 1.50636558 x 10713
1 —7.99333712 x 1014
1 — 4.23689501 x 1014
1 —2.24339638 x 1014
1 —1.18664036 x 1014
1 —6.27050108 x 10~ 1°
1 —3.31031937 x 10~ 1°
1 — 1.74596623 x 10715
1 —9.20053753 x 10716
1 — 4.84411532 x 10716
1 — 2.54830597 x 10716
1 — 1.33947884 x 10716
1 — 7.03522828 x 1017
1 — 3.69223163 x 1017
1 — 1.93632388 x 1017
1 —1.01474020 x 10~ 17
1 — 5.31408628 x 10718
1 — 2.78104424 x 1018

TABLE 1. Values of F(Z,q) computed using the algorithm in Section

1.5402654962770992783
1.1301714500071343633
1.0329809138654179703
1.0039698809027713378
0.9960179423616558785
0.9949687972770260308
0.9959150552841082468
0.9971537408436136635
0.9981715655684219998
0.9988850772260466434
0.9993449618001374514
0.9996258781376391880
0.9997910525523849739
0.9998854079068883995
0.9999380941647140707
0.9999669753501071136
0.9999825683197510197
0.9999908809671412008
0.9999952655907561082
0.9999975577054795509
0.9999987469201610398
0.9999993600015746679
0.9999996743758878555
0.9999998348554963871
0.9999999164676982231
0.9999999578414305089
0.9999999787613648921
0.9999999893163745066
1 —5.36761349 x 109
1 — 2.69410095 x 10~°
1 —1.35113624 x 10~°
1 —6.77181711 x 10~ 1°
1 — 3.39225102 x 10~
1 — 1.69860734 x 10710
1 — 8.50270680 x 10~ 1!
1 — 4.25510590 x 10~ 11
1 —2.12900347 x 10~ 1!
1 — 1.06506036 x 10~ 1!
1 — 5.32744564 x 10~ 12
1 — 2.66454275 x 10712
1 — 1.33258396 x 1012
1 — 6.66410782 x 1013
1 — 3.33250407 x 10713
1 — 1.66642213 x 10713
1 —8.33275164 x 10~ 4
1 —4.16661672 x 10714
1 — 2.08339867 x 101
1 —1.04173311 x 10~ 14
1 — 5.20879158 x 10~ 1°
1 — 2.60444270 x 10~ 1°
1 — 1.30223878 x 10~1°
1 —6.51125852 x 1016
1 — 3.25565316 x 10716
1 —1.62783540 x 10716
1 — 8.13920956 x 1017
1 — 4.06961675 x 1017
1 — 2.03481277 x 10~ 17
1 — 1.01740799 x 1017
1 — 5.08704588 x 10718
1 — 2.54352509 x 10718
1 —1.27176333 x 10718
1 — 6.35881953 x 10~ 1°
1 —3.17941081 x 10~
1 — 1.58970578 x 10719
1 — 7.94853029 x 10~ 2°
1 — 3.97426564 x 10~2°
1 — 1.98713300 x 10~2°
1 —9.93566566 x 102!
1 — 4.96783306 x 102!
1 — 2.48391661 x 10~ 2!

1.5708306089585806605
1.1544864845853626474
1.0517959064091933064
1.0178327413536777409
1.0057528618201179388
1.0015148661835156763
1.0001513629475453519
0.9998044985849281472
0.9997818901532824166
0.9998382721719850807
0.9998964608075082070
0.9999386341284465735
0.9999653236912439819
0.9999810267336057817
0.9999898540553063995
0.9999946649895369026
0.9999972297481776256
0.9999985750920124071
0.9999992723231812274
0.9999996304000129789
0.9999998130414889626
0.9999999057197182304
0.9999999525652106483
0.9999999761751077814
0.9999999880486329738
1 — 5.98967599 x 10~°
1 — 2.99983553 x 10~°
1 —1.50169185 x 10~°
1 —7.51472174 x 10~
1 — 3.75956001 x 1010
1 — 1.88054855 x 10710
1 — 9.40541670 x 10~
1 — 4.70363487 x 10711

1 —2.35213727 x 10711
1—1.17617865 x 10~ !
1 — 5.88127058 x 10712
1 — 2.94076429 x 10712
1 — 1.47042613 x 10~ 12
1 — 7.35228032 x 1013
1 — 3.67619095 x 10713
1 —1.83811268 x 10~ 13
1 —9.19062162 x 10~ 4
1 — 4.59533045 x 10714
1 —2.29767184 x 10~ 1%
1 —1.14883815 x 10~ 4

1 — 5.74419826 x 10~ 1°
1 —2.87210164 x 10~ 1°
1 — 1.43605166 x 10~
1 —7.18026118 x 106

1 — 3.59013154 x 10~ 16
1 — 1.79506608 x 10~ 16
1 — 8.97533150 x 1017
1 — 4.48766610 x 1017
1 — 2.24383317 x 10~ 17
1—1.12191662 x 10~ 7

1 — 5.60958326 x 1018
1 — 2.80479167 x 10~ '8
1 — 1.40239585 x 10718
1 —7.01197931 x 10~1°
1 — 3.50598967 x 10~1°
1 — 1.75299484
1 — 8.76497422
1 — 4.38248711
1 — 2.19124356
1 — 1.09562178
1 — 5.47810891
1 — 2.73905445
1 — 1.36952722
1 — 6.84763614 x 10~ 22
1 — 3.42381807 x 10~ 22

X

Ju—

2
—
©

X X X X X X X
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1.5876369878229405564
1.1668343411440889017
1.0606722482320695710
1.0239276909306761841
1.0097501408648004439
1.0040299319147160468
1.0016773165460739756
1.0007015961030813973
1.0002951481314120617
1.0001251569695533427
1.0000536550878474023
1.0000233235195754782
1.0000103050740808725
1.0000046345106376206
1.0000021220772785316
1.0000009884203117771
1.0000004675067009067
1.0000002240397871479
1.0000001085215464210
1.0000000530122567057
1.0000000260642202254
1.0000000128768650727
1 4 6.38426063 x 10~°

1+ 3.17334132 x 10~°

1+ 1.58018897 x 10~°

14 7.87869180 x 10~ 10
14 3.93173826 x 10710
14 1.96327799 x 10710
14 9.80759342 x 10~ 1
1 4 4.90081887 x 10711
1+ 2.44940385 x 10711
1+ 1.22436306 x 10!
14 6.12067553 x 10712
1 4 3.05995497 x 10712
1+ 1.52984909 x 10712
1+ 7.64881531 x 1013
1+ 3.82426367 x 10713
14 1.91208367 x 10713
1+ 9.56025742 x 10~ 4
1 4 4.78007493 x 10~ 14
14 2.39001951 x 10~ 14
14 1.19500376 x 10~ 14
1 4 5.97499880 x 10715
1 4 2.98749272 x 10715
1+ 1.49374413 x 101
14 7.46871326 x 10716
1+ 3.73435415 x 10716
14 1.86717625 x 10716
14 9.33587851 x 10717
1+ 4.66793833 x 10~17
1+ 2.33396886 x 10717
1+ 1.16698432 x 10~ 17
1+ 5.83492130 x 10718
14 2.91746053 x 10718
1+ 1.45873023 x 10718
14 7.29365103 x 10~19
1+ 3.64682547 x 1019
1+ 1.82341272 x 101
14 9.11706357 x 10~2°
14 4.55853177 x 10~2°
14 2.27926587 x 10~2°
1+ 1.13963293 x 10~2°
14 5.69816468 x 10~ 2!
1 + 2.84908234 x 102t
14 1.42454116 x 10~2!
1+ 7.12270584 x 1022
1+ 3.56135292 x 1022
1 4 1.78067646 x 10~ 22
1 4 8.90338230 x 10~23
1+ 4.45169115 x 10723

1.6055616864329830894
1.1790969073890668757
1.0689297642298799167
1.0292662613922721641
1.0130607223966467259
1.0060072704223504918
1.0028205606817957574
1.0013445588428900262
1.0006484376681192577
1.0003155548064037100
1.0001546392373837702
1.0000761897594317088
1.0000376910537044268
1.0000187023114699499
1.0000093007543809601
1.0000046327688406045
1.0000023102741326004
1.0000011530296441410
1.0000005757919164950
1.0000002876491601127
1.0000001437406709444
1.0000000718419078680
1.0000000359113517749
1.0000000179524406680
1+ 8.97513258 x 10~°

1+ 4.48720120 x 10~°

1+ 2.24347823 x 10~°

X
X

X

1+ 1.12169815 x 10~°

1+ 5.60835373 x 10710
1+ 2.80413107 x 10~
1+ 1.40205024 x 10~ 10
1+ 7.01020012 x 10~
1+ 3.50508301 x 10~ 11
14 1.75253582 x 10~ 11
1+ 8.76266014 x 10~ 12
1+ 4.38132374 x 1012
1+ 2.19065976 x 10~ 12
1+ 1.09532917 x 10~ 12
1+ 5.47664354 x 10713

1+ 2.73832098 x 10713
1+ 1.36916023 x 10~ 13
1+ 6.84580029 x 10~ 14
1+ 3.42289985 x 10714
1+ 1.71144983 x 10~ 14
1+ 8.55724884 x 101
1+ 4.27862431 x 10~ 1°

1+ 2.13931212 x 10~ 1°
14 1.06965604 x 10~1°
1+ 5.34828020 x 1016
1+ 2.67414008 x 10~ 16
1+ 1.33707004 x 10~16
1+ 6.68535018 x 10~ 17
1 + 3.34267508
1+ 1.67133754
1 4 8.35668770
1+ 4.17834385
1 + 2.08917192
1 + 1.04458596
1+ 5.22292981
1 + 2.61146490
1 4 1.30573245
1 + 6.52866226
1+ 3.26433113
1 + 1.63216556
1 + 8.16082782
1 + 4.08041391
1 + 2.04020695
1+ 1.02010347
14 5.10051739 x 10~ 22
1+ 2.55025869 x 10~ 22

X
=
o
|
—
3

X XXX XXX XXXXX X XXX
=
o
|
—
©

To obtain these values

we used N =200 (¢ =2), N =150 (¢ = 3,4) and N =110 (¢ = 5,7), and a precision of 256 bits.
Each number is accurate to as many decimal places as displayed and is truncated (not rounded).
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