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Abstract. Erdős proved that F(A) :=
∑

a∈A
1

a log a
converges for any primitive set of integers A and later

conjectured this sum is maximized when A is the set of primes. Banks and Martin further conjectured that
F(P1) > . . . > F(Pk) > F(Pk+1) > . . ., where Pj is the set of integers with j prime factors counting
multiplicity, though this was recently disproven by Lichtman. We consider the corresponding problems over
the function field Fq [x], investigating the sum F(A) :=

∑
f∈A

1
degf ·qdegf . We establish a uniform bound

for F(A) over all primitive sets of polynomials A ⊂ Fq [x] and conjecture that it is maximized by the set of
monic irreducible polynomials. We find that the analogue of the Banks-Martin conjecture is false for q = 2,
3, and 4, but we find computational evidence that it holds for q > 4.

1. Introduction

A primitive set is one in which no element of the set divides another. In 1935, Erdős [5] proved that for
any primitive set of positive integers A 6= {1},

F(A) :=
∑
a∈A

1

a log a
< ∞.

In 1988, Erdős conjectured that the primitive set which maximizes this sum is the set of primes.

Conjecture 1.1 (Erdős). Let P denote the set of prime numbers. For all primitive sets of positive integers
A 6= {1}, ∑

a∈A

1

a log a
≤
∑
p∈P

1

p log p
. (1)

While this conjecture remains open, significant progress has been made. In 1991, Zhang [16] showed that
the conjecture holds for all primitive sets containing no element with more than four prime factors counted
with multiplicity. Two years later, Erdős and Zhang [6] showed that F(A) < 1.84 for any primitive set; this
was improved last year by Lichtman and Pomerance [9] to F(A) ≤ eγ = 1.781072 . . .. For comparison, we
know due to Cohen [4] that F(P) = 1.636616 . . ..

In 2013, Banks and Martin [2] proposed a related conjecture concerning the Erdős sum of primitive sets
with a fixed number of prime factors.

Conjecture 1.2. (Banks, Martin) Let Pk be the set of natural numbers with exactly k prime factors counted
with multiplicity and let F be the Erdős sum in the integers. Then

F(P1) > F(P2) > . . . > F(Pk) > F(Pk+1) . . . .

Taken together with a theorem of Zhang [16], results of Bayless, Kinlaw, and Klyve [3] show that F(P1) >
F(P2) > F(P3). Just this year, however, Lichtman [8] showed that the conjectured inequality fails to hold
for all k, and that F(Pk) in fact attains a global minimum at k = 6.

In this paper, we examine analogues of these conjectures for the function field Fq[x]. Here, the natural
parallel of the Erdős sum (1) is

F(A) :=
∑
a∈A

1

qdeg a deg a
,

which we conjectured in [7] is maximized by the set Iq ⊂ Fq[x] of monic irreducible polynomials.
In Section 2, we estimate F(Iq) and show that it approaches π

2

6 = 1.644930 . . . as q →∞. We then establish
effective bounds for the function field analogue of Mertens’ third theorem in Section 3, which we use to
compute an upper bound for F(A) over all primitive sets A ⊂ Fq[x] in Section 4. When 3 ≤ q ≤ 19, we obtain
a bound of eγ just as in the integer case, and when q > 19, we obtain a bound of eγ−1 + π2−3

6 = 1.800153 . . ..
In the case where q = 2, we show that F(A) < 1 + eγ

2 = 1.890536 . . ..
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In Sections 5 and 6, we consider the function field analogue of the Banks-Martin conjecture. Letting Ik,q
be the set of monic polynomials in Fq[x] with k irreducible factors, we demonstrate that the infinite chain
of inequalities

F(I1,q) > F(I2,q) > . . . > F(Ik,q) > F(Ik+1,q) . . .

fails to hold when q = 2, 3, or 4. However, we show that for each k, there exists a qk such that

F(I1,q) > F(I2,q) > . . . > F(Ik,q)
for all q ≥ qk, and furthermore, that qk = O(k24k). We also present an approach to efficiently compute
F(Ik,q) with high precision, providing numerical evidence that the Banks-Martin conjecture in Fq[x] may
hold in full generality when q ≥ 5.

For the remainder of this paper, we denote the degree of a polynomial f ∈ Fq[x] by deg f and write
||f || = qdeg f for the norm of f . Following the conventions we established in [7], we restrict our attention to
primitive subsets of monic polynomials and exclude the set {1} from consideration.

2. Counting Irreducibles in Fq[x]

We begin by evaluating the Erdős sum over the monic irreducibles Iq ⊂ Fq[x]. Letting π′q(n) denote the
number of degree n irreducibles in Fq[x], we rewrite our sum as

F(Iq) =

∞∑
n=1

π′q(n)

nqn
.

The numerators of this sum can be expressed in terms of the Möbius function µ using Gauss’ formula

π′q(n) =
1

n

∑
d|n

qdµ
(n
d

)
,

which allows us to obtain bounds on π′q(n) and F(Iq).

Proposition 2.1.
qn

n
−
( q

q − 1

)qn/2
n
≤ π′q(n) ≤ qn

n
.

Proof. The upper bound is a known result whose proof can be found in [11]. The lower bound is immediate
when n = 1, so we will consider the case where n > 1. We know from Gauss’ formula that

qn

n
− π′q(n) =

qn

n
− 1

n

∑
d|n

qdµ
(n
d

)
=

qn/p
′

n
− 1

n

∑
d|n,

d<n/p′

qdµ
(n
d

)
,

where p′ is the smallest prime factor of n. This expression is at most

qn/p
′

n
+

1

n

n/p′−1∑
d=1

qd =
qn/p

′

n
+

1

n

(
qn/p

′ − q
q − 1

)
≤ qn/2

n
+

1

n

(
qn/2 − q
q − 1

)
=
( q

q − 1

)(qn/2 − 1

n

)
,

which gives that

π′q(n) ≥ qn

n
−
( q

q − 1

)qn/2
n

. �

Proposition 2.2.
π2

6
− q

q − 1
Li2
(

1
√
q

)
≤ F(Iq) ≤

π2

6
,

where Li2(x) is the dilogarithm Li2(x) =
∑∞
k=1

xk

k2 . In particular, F(Iq)→ π2

6 as q →∞.

Proof. These bounds are a consequence of Proposition 2.1. For the upper bound, we have
∞∑
n=1

π′q(n)

nqn
≤

∞∑
n=1

1

n2
=

π2

6
,

and for the lower bound, we have
∞∑
n=1

π′q(n)

nqn
≥

∞∑
n=1

1

n2
−
(

q

q − 1

)
1

n2qn/2
=

π2

6
− q

q − 1
Li2
(

1
√
q

)
.
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As q →∞, Li2
(

1√
q

)
→ 0, so the lower bound for F(Iq) converges to the upper bound. �

In the following proposition, we show that the value of F(Iq) increases monotonically with q, which
implies that F(I2) is a lower bound on F(Iq) for any q. The lower bound obtained by computing this sum
(see Section 2.1) is strictly better than the lower bound in Proposition 2.2 for all q < 37.

Proposition 2.3. For any prime powers q1 < q2, F(Iq1) < F(Iq2).

Proof. The inequality can be verified computationally for q1 = 2 and q2 = 3. To address the remaining cases,
we will show that each term π′q(n)

nqn of F(Iq) is strictly increasing in q when q ≥ 3. By Gauss’ formula, this is
equivalent to showing that

1

qn

∑
d|n

qdµ
(n
d

)
is increasing in q. The derivative of this expression with respect to q is

qn
∑
d|n dq

d−1µ
(
n
d

)
− nqn−1

∑
d|n q

dµ
(
n
d

)
q2n

=

∑
d|n(d− n)qdµ

(
n
d

)
qn+1

.

To show it is positive, we first note that
∑
d|n(d−n)qdµ

(
n
d

)
is a polynomial in q whose leading nonzero term

is (n− n
p′ )q

n/p′ , where p′ is the smallest prime factor of n. Since µ(m) ≤ 1 for all m, this polynomial can be
bounded below by (

n− n

p′

)
qn/p

′
+

n/p′−1∑
d=1

(d− n)qd.

This expression in turn is at least(
n− n

p′

)
qn/p

′
−
n/p′−1∑
d=1

nqd =

(
n− n

p′

)
qn/p

′
− n

(
qn/p

′ − 1

q − 1

)
+ n

= nqn/p
′
(p′ − 1

p′
− 1

q − 1

)
+

n

q − 1
+ n ≥ n

q − 1
+ n,

where the last inequality holds because p′−1
p′ −

1
q−1 is nonnegative for all p′ ≥ 2 and q ≥ 3. It follows that

the derivative is positive, which means that F(Iq) is strictly increasing for q ≥ 3. �

2.1. Numerical note. Even though a closed formula for F(Iq) seems elusive, it is surprisingly easy to
compute its value to very high precision for any fixed value of q. Suppose we have computed a partial sum
of F(Iq),

SN,q :=

N∑
n=1

π′q(n)

nqn
.

We estimate the remainder of this sum as

F(Iq)− SN,q =

∞∑
n=N+1

π′q(n)

nqn
=

∞∑
n=N+1

(
1

n2
−

qn

n − π
′
q(n)

nqn

)

= ζ(2)−
n∑
n=1

1

n2
−

∞∑
n=N+1

(
qn

n − π
′
q(n)

nqn

)
. (2)

From Proposition 2.1, we have

0 ≤ qn

n
− π′q(n) ≤

(
q

q − 1

)
qn/2

n
,

and so

0 ≤
∞∑

n=N+1

(
qn

n − π
′
q(n)

nqn

)
≤ q

q − 1

∞∑
n=N+1

1

n2qn/2
<

q

N2(q − 1)

(
q−(N+1)/2

1− q−1/2

)
<

5q−N/2

N2

for q ≥ 2. Using this in (2) gives the bounds

SN,q + ζ(2)−
N∑
n=1

1

n2
− 5q−N/2

N2
≤ F(Iq) ≤ SN,q + ζ(2)−

N∑
n=1

1

n2
.
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When q = 2, taking N = 70, 000 is sufficient to compute the value of F(I2) = 1.4676602238442289268 . . .
to over 10,000 digits accuracy in a few seconds, and this converges even faster for larger values of q.

3. Bounds for the Mertens Product

In [7], as part of our proof that the Erdős sum converges for all primitive sets, we used the Sieve of
Erastosthenes to show that the density of multiples of f with no irreducible factors of smaller degree is

1

||f ||
∏
p∈Iq

deg p≤D(f)

(
1− 1

||p||

)
,

where D(f) denotes the largest degree of an irreducible factor of f . We were then able to bound this
expression using an analogue of Mertens’ third theorem in function fields–a special case of Theorem 3 in [13].

Theorem 3.1. ∏
p∈Iq

deg p≤n

(
1− 1

||p||

)
∼ 1

eγn
, (3)

where γ = 0.577215 . . . is the Euler-Mascheroni constant.

In order to obtain a numerical upper bound for F(A), we’ll need to establish more precise bounds for the
Mertens product (3). If we take the natural logarithm of this product, we obtain

n∑
i=1

π′q(i) log
(

1− 1

qi

)
= −

n∑
i=1

π′q(i)

( ∞∑
k=1

1

kqik

)
.

Below we have written out the first six terms of this summation. Notice that the sum of the constant terms
from each expression form a partial sum of the harmonic series, and that partial cancellation occurs in the
coefficients of other powers of q. In particular, the sums for the coefficients of 1

qj are zero for 1 ≤ j ≤ 3; the
terms perfectly cancel out.

π′q(1) log
(

1− 1
q1

)
= q

∞∑
k=1

1
kqk

= 1 + 1
2q + 1

3q2 + 1
4q3 + 1

5q4 + 1
6q5 + · · ·

π′q(2) log
(

1− 1
q2

)
= q2−q

2

∞∑
k=1

1
kq2k

= 1
2 + 1

2q + 1
4q2 + 1

4q3 + 1
6q4 + 1

6q5 + · · ·

π′q(3) log
(

1− 1
q3

)
= q3−q

3

∞∑
k=1

1
kq3k

= 1
3 + 0 + 1

3q2 + 1
6q3 + 0 + 1

6q5 + · · ·

π′q(4) log
(

1− 1
q4

)
= q4−q2

4

∞∑
k=1

1
kq4k

= 1
4 + 0 + 1

4q2 + 0 + 1
8q4 + 0 + · · ·

π′q(5) log
(

1− 1
q5

)
= q5−q

5

∞∑
k=1

1
kq5k

= 1
5 + 0 + 0 + 0 + 1

5q4 + 1
10q5 + · · ·

π′q(6) log
(

1− 1
q6

)
= q6−q3−q2+q

6

∞∑
k=1

1
kq6k

= 1
6 + 0 + 0 + 1

6q3 + 1
6q4 + 1

6q5 + · · ·

In the following lemma, we show that for all n, this same cancellation occurs for each j ∈
[
1,
⌊
n
2

⌋]
. By

bounding the contribution from terms 1
qj with j > n

2 , we obtain bounds for
∑
π′q(i) log

(
1− 1

qi

)
in terms of

partial sums of the harmonic series.

Lemma 3.2.(
1− 1

2(q − 1)qbn/2c

) n∑
i=1

1

i
≤

∣∣∣∣∣
n∑
i=1

π′q(i) log

(
1− 1

qi

)∣∣∣∣∣ ≤
(

1 +
1

2(q − 1)qbn/2c

) n∑
i=1

1

i
.

Proof. To simplify our calculations, we define

νi(d) =

{
µ
(
i
d

)
d|i

0 otherwise

so that our formula for π′q(i) can be written as

1

i

∑
d|i

qdµ

(
i

d

)
=

1

i

i∑
d=1

qdνi(d).
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Substituting this expression for π(i) and expanding each logarithm as a Taylor series gives∣∣∣∣∣
n∑
i=1

π(i) log
(

1− 1

qi

)∣∣∣∣∣ =

n∑
i=1

(
1

i

i∑
d=1

qdνi(d)

)( ∞∑
k=1

1

kqik

)

=

n∑
i=1

i∑
d=1

∞∑
k=1

(
νi(d)

ik
· 1

qik−d

)
. (4)

Since d ≤ ik for all terms in this triple sum, it can be written as a power series of the form
∑∞
j=0 cj ·

1
qj for

some coefficients cj . In particular, it will be the case that

cj =

n∑
d=1

1

j + d

∑
r| j+dd
r≤n/d

µ(r).

To see why this is true, note that the terms in (4) which contribute to cj are exactly those for which
ik = j + d. Since νi(d) = 0 for all d > i, we can extend the sum over d to include values up to d = n.
Furthermore, because the sum has finitely many nonzero terms, we can interchange the order of summation
so that

n∑
i=1

i∑
d=1

∞∑
k=1

(
νi(d)

ik
· 1

qik−d

)
=

n∑
d=1

∞∑
k=1

n∑
i=1

(
νi(d)

ik
· 1

qik−d

)
.

For any fixed d, its contribution to cj is∑
i,k

ik=j+d
i≤n

νi(d)

ik
=

1

j + d

∑
i,k

ik=j+d
i≤n

νi(d) =
1

j + d

∑
i|(j+d)
i≤n

νi(d) =
1

j + d

∑
r| j+dd
r≤n/d

µ(r),

where we have made the substitution r = i
d and used the definition of ν in the last equality. Summing over

all d gives us the desired expression for cj .
For the specific case of j = 0,

c0 =

n∑
d=1

1

d

∑
r|1

µ(r) =

n∑
d=1

1

d
.

Now consider the case in which j ∈ [1, n2 ]. If r| j+dd then j+d
d is an integer, which implies that d ≤ j. It follows

that j + d ≤ 2j ≤ n, so r ≤ n
d whenever r| j+dd . As a result,

cj =

n∑
d=1

1

j + d

∑
r| j+dd

µ(r) =

n∑
d=1

1

j + d
· 0 = 0,

where we have used the fact that the sum of µ(r) over all divisors of j+dd equals zero. Hence we can rewrite
our expression as follows:∣∣∣∣∣

n∑
i=1

π′q(i) log
(

1− 1

qi

)∣∣∣∣∣ =

∞∑
j=0

cj ·
1

qj
=

n∑
d=1

1

d
+

∞∑
j=bn/2c+1

cj ·
1

qj
. (5)

Our final task will be to bound the last summation. To do so, observe that∣∣∣∣∑
r∈S

µ(r)

∣∣∣∣ ≤ j + d

2d

whenever S is a subset of divisors of j+dd . This follows from the fact that µ(r) can only take on values of 1,
−1, or 0 for at most j+d

d different values of r, and that the sum of µ(r) over all divisors of j+dd equals zero.
In particular, this holds when S is the subset of divisors that are at most n

d , so

|cj | =

n∑
d=1

1

j + d

∣∣∣∣∣ ∑
r| j+dd
r≤n/d

µ(r)

∣∣∣∣∣ ≤
n∑
d=1

1

j + d
· j + d

2d
=

n∑
d=1

1

2d
.
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It follows that∣∣∣∣∣∣
∞∑

j=bn/2c+1

cj ·
1

qj

∣∣∣∣∣∣ ≤
∞∑

j=bn/2c+1

∣∣∣∣cj · 1

qj

∣∣∣∣ ≤ ∞∑
j=bn/2c+1

1

qj

n∑
d=1

1

2d
=

1

2(q − 1)qbn/2c

n∑
d=1

1

d

which, along with equation (5), implies that(
1− 1

2(q − 1)qbn/2c

) n∑
i=1

1

i
≤
∣∣∣∣ n∑
i=1

π′q(i) log
(

1− 1

qi

)∣∣∣∣ ≤ (
1 +

1

2(q − 1)qbn/2c

) n∑
i=1

1

i
. �

Proposition 3.3. ∏
p∈Iq

deg p≤n

(
1− 1

||p||

)
≤ 1

eγn
.

Proof. From Lemma 3.2, we have

−
n∑
i=1

π′q(i) log

(
1− 1

qi

)
≥

n∑
i=1

1

i

(
1− 1

2(q − 1)qn/2

)
.

For the harmonic number
∑n
i=1

1
i , Pólya and Szergő [12] give a lower bound of

log n+ γ +
1

2n
− 1

8n2
,

which we can substitute into our inequality to obtain
n∑
i=1

π′q(i) log

(
1− 1

qi

)
≤ − log n− γ − 1

2n
+

1

8n2
+

1

2(q − 1)qn/2

(
log n+ γ +

1

2n
− 1

8n2

)
.

We claim that in all but finitely many cases,

− 1

2n
+

1

8n2
+

1

2(q − 1)qn/2

(
log n+ γ +

1

2n
− 1

8n2

)
≤ 0.

First consider the case of q = 3. It can be calculated that the derivative of the expression with respect
to n is negative for all n ≥ 3, so the expression is decreasing in n. The inequality can then be verified
computationally for n ≤ 3, so the inequality holds for all n when q = 3. Furthermore, the expression is
decreasing in q, so the fact that the inequality holds for q = 3 implies that it holds for all q ≥ 3. Setting
q = 2 and taking the derivative with respect to n, it can be shown that the inequality also holds for q = 2
when n ≥ 10. Hence in all of these cases

n∑
i=1

π′q(i) log

(
1− 1

qi

)
≤ − log n− γ,

and so ∏
p∈Iq

deg p≤n

(
1− 1

||p||

)
≤ 1

eγn
.

The remaining cases in which q = 2 and n ≤ 9 can be verified computationally to complete the proof. �

Proposition 3.4. Except in the case q = 2 and n = 1,∏
p∈Iq

deg p≤n

(
1− 1

||p||

)
>

1

eγ(n+ 1)
.

Proof. Once again from Lemma 3.2, we have

−
n∑
i=1

π′q(i) log
(

1− 1

qi

)
≤ −

(
1 +

1

2(q − 1)qbn/2c

) n∑
i=1

1

i
.

From Young [15], we know that
∑n
i=1

1
i is bounded above by

log(n+ 1) + γ − 1

2n+ 2
,
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so our inequality becomes
n∑
i=1

π′q(i) log
(

1− 1

qi

)
≥ − log(n+ 1)− γ +

1

2n+ 2
− 1

2(q − 1)qbn/2c

(
log(n+ 1) + γ − 1

2n+ 2

)
.

If we can show that the sum of the last two terms is nonnegative, then we will have
n∑
i=1

π′q(i) log

(
1− 1

qi

)
≥ − log(n+ 1)− γ,

upon which exponentiating both sides gives the desired inequality.
We first prove this is true for q ≥ 4. Our expression

1

2n+ 2
− 1

2(q − 1)qbn/2c

(
log(n+ 1) + γ − 1

2n+ 2

)
is increasing with respect to q, so it suffices to consider the case when q = 4. Because 4bn/2c ≥ 2n−1, we only
need to demonstrate that

1

3 · 2n

(
log(n+ 1) + γ − 1

2n+ 2

)
≤ 1

2n+ 2
.

This inequality can be computationally verified for n = 1. For n ≥ 2, we have log(n+ 1) + γ − 1
2n+2 < n, so

it suffices to show
n

3 · 2n
≤ 1

2n+ 2
,

or equivalently, 0 ≤ 3 ·2n−2n2−2n. The right hand side equals zero when n = 2 or n = 3, and its derivative
3 · 2n log 2− 4n+ 2 is positive for n ≥ 3, so the inequality is true for all n when q ≥ 4.

Similar analytic arguments can be used to show that the inequality is true for q = 3 when n ≥ 8 and for
q = 2 when n ≥ 18, and the remaining cases can be checked through direct computation. �

4. An Upper Bound for the Erdős Sum

Our bounds on the Mertens product are particularly well-suited for bounding subsets of a primitive set
A whose members share a smallest irreducible common factor. Formally speaking, we choose an arbitrary
ordering of Iq that respects increasing degree and define p(f) and P (f) to be the monic irreducible factor
of f which has least and greatest index according to this ordering, respectively. Then, we let A′p = {a ∈ A :
p(a) = p} and note that {A′p}p∈Iq is a partition of A. Because the Erdős sum converges for any primitive
set A [7], we can obtain an upper bound for F(A) by summing together upper bounds for F(A′p) over all
monic irreducibles p.

When p /∈ A, we can bound F(A′p) by adapting an argument that Lichtman and Pomerance [9] developed
for the integer case. We let g(a) represent the asymptotic density of monic multiples of a all of whose factors
have degree at least that of P (a), whose formula is given by

g(a) =
1

||a||
∏
f∈Iq
f<P (a)

(
1− 1

||f ||

)
.

We also define d(f) = deg p(f) and D(f) = degP (f). Then we have the following bound for F(A′p):

Proposition 4.1. Let A ⊂ Fq[x] be primitive and p /∈ A be irreducible. Unless q = 2 and deg p = 1,

F(A′p) < eγg(p).

Proof. For each a ∈ A′p, Proposition 3.4 gives

g(a) =
1

||a||
∏
f∈Iq
f<P (a)

(
1− 1

||f ||

)
>

1

||a||
∏
f∈Iq

deg f≤D(a)

(
1− 1

||f ||

)
≥ 1

eγ(D(a) + 1)||a||
.

Note that this holds even in the case q = 2, since deg p > 1 implies D(a) > 1. When p /∈ A, we have
deg a ≥ D(a) + 1, so

g(a) >
1

eγ ||a||deg a
=

1

eγ
F(a).

7



This gives us the preliminary upper bound

F(A′p) =
∑
a∈A′p

F(a) < eγ
∑
a∈A′p

g(a).

To bound this last summation, note that A′p ⊂ A is primitive. Thus if we define Sa = {fa : p(f) ≥ P (a)}
for each a ∈ A′p, we see that the Sa must be pairwise disjoint. Because Sa consists of the monic multiples of a
whose other irreducible factors have index at least P (a), the asymptotic density of Sa is g(a). Sa is contained
in the set of all polynomials f such that p(f) = p(a) = p, which has asymptotic density g(p). Because the
Sa are disjoint, ∑

a∈A′p

g(a) ≤ g(p).

It follows that F(A′p) ≤ eγg(p), as desired. �

When deg p = 1, it is possible to obtain bounds for F(A′p) that are tighter than those which would be
obtained by applying Proposition 4.1 directly. In order to do so, we will partition each A′p into subsets At,
which consist of elements of A′p that are exactly divisible by t.

Proposition 4.2. Let t be a product of degree 1 irreducibles and let A be primitive. Define At = {a ∈ A :
t|a and d(a/t) ≥ 2}. If t /∈ A,

F(At) <
eγ

||t||
∑

p∈Iq\A
deg p>1

g(p).

Proof. Let Bt = {a/t : a ∈ At}. Note that Bt is primitive, and furthermore that if t /∈ A, then Bt 6= {1}.
Because t /∈ A, we have

F(At) =
∑
p∈Iq

deg p>1

F(t · (Bt)′p)

where set multiplication is defined in the natural way: f · S = {f · s : s ∈ S}. If p /∈ (Bt)′p then Proposition
4.1 gives us the strict inequality in

F(t · (Bt)′p) ≤
F((Bt)′p)

||t||
<

eγg(p)

||t||
.

If p ∈ (Bt)′p then F(t · (Bt)′p) = F(tp). Using Proposition 3.4,

F(tp) =
1

||tp||deg tp
≤ 1

||tp||(deg p+ 1)
<

eγ

||tp||
∏
f∈Iq

deg f≤deg p

(
1− 1

||f ||

)
<

eγg(p)

||t||
.

Note that if F((Bt)′p) 6= 0 then A contains nontrivial multiples of p and thus p /∈ A. It follows that∑
p∈Iq

deg p>1

F(t · (Bt)′p) <
eγ

||t||
∑

p∈Iq\A
deg p>1

g(p). �

By summing over all possible t, we can establish an upper bound for
∑
p∈Iq,deg p=1 F(A′p). While our

initial bound will depend on the proportion of irreducibles not contained in A, we will later determine for
which proportions this bound is maximized to obtain an upper bound independent of this quantity. Because
the proof depends on Proposition 4.1, which does not always apply when q = 2, we will first establish the
result for q ≥ 3 and then consider the case q = 2 separately.

Lemma 4.3. Let α be the proportion of degree 1 irreducibles not contained in A. When q ≥ 3,∑
p∈Iq

deg p=1

F(A′p) < (1− α) + eγ
∑

p∈Iq\A
deg p>1

g(p) + eγ
(

1− 1

q

)q ((
1− 1

q

)−αq
− α− 1

)
. (6)
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Proof. Let K be the set of degree 1 irreducibles not contained in A, and note that |K| = αq. Let t denote
a product of degree 1 irreducibles as before. If t is a multiple of a degree 1 irreducible contained in A, then
At = ∅ and so F(At) = 0. Hence∑

p∈Iq
deg p=1

F(A′p) =
∑
t∈A

deg t=1

F(t) +
∑
t/∈A

deg t=1

F(At) +
∑

t/∈A,P(t)⊂K
deg t>1

F(At) +
∑

t∈A,P(t)⊂K
deg t>1

F(t),

where P(t) denotes the set of irreducible factors of t. The first sum equals∑
t∈A

deg t=1

1

q
=

(1− α)q

q
= 1− α,

and we can use Proposition 4.2 to bound the second sum as∑
t/∈A

deg t=1

F(At) <
∑
t/∈A

deg t=1

eγ

||t||
∑

p∈Iq\A
deg p>1

g(p) = αeγ
∑

p∈Iq\A
deg p>1

g(p).

Similarly, we can bound the third sum as∑
t/∈A,P(t)⊂K

deg t>1

F(At) <
∑

t/∈A,P(t)⊂K
deg t>1

eγ

||t||
∑

p∈Iq\A
deg p>1

g(p) ≤
∑

t/∈A,P(t)⊂K
deg t>1

eγ

||t||
∑
p∈Iq

deg p>1

g(p).

Finally, when q ≥ 3 and deg t > 1, we can deduce that
1

||t||deg t
≤ 1

2||t||
≤ eγ

||t||

(
1− 1

q

)q
, (7)

where the last inequality holds because
(

1− 1
q

)q
is increasing with q and eγ

(
1− 1

3

)3
= 0.52772 . . . > 1

2 .
This allows us to bound the final sum as∑

t∈A,P(t)⊂K
deg t>1

F(t) ≤
∑

t∈A,P(t)⊂K
deg t>1

eγ

||t||

(
1− 1

q

)q
,

upon which summing together our four bounds gives∑
p∈Iq

deg p=1

F(A′p) < (1− α) + αeγ
∑

p∈Iq\A
deg p>1

g(p) +
∑

t/∈A,P(t)⊂K
deg t>1

eγ

||t||
∑
p∈Iq

deg p>1

g(p) +
∑

t∈A,P(t)⊂K
deg t>1

eγ

||t||

(
1− 1

q

)q
.

To simplify the third term of this expression, note that

∑
p∈Iq

deg p=1

g(p) =
1

q

q−1∑
i=0

(
1− 1

q

)i
=

1

q


(

1− 1
q

)q
− 1(

1− 1
q

)
− 1

 = 1−
(

1− 1

q

)q
.

Because every polynomial is divisible by an irreducible,
∑
p∈Iq g(p) = 1, which means∑

p∈Iq
deg p>1

g(p) = 1−
∑
p∈Iq

deg p=1

g(p) =

(
1− 1

q

)q
.

Using this formula for
∑

p∈Iq
deg p>1

g(p) and combining the last two terms of the expression, our bound becomes

∑
p∈Iq

deg p=1

F(A′p) ≤ (1− α) + αeγ
∑

p∈Iq\A
deg p>1

g(p) +
∑
P(t)⊂K
deg t>1

eγ

||t||

(
1− 1

q

)q
.

We can evaluate the sum of reciprocals in the last term using an Euler-like product expansion because Fq[x]
is a unique factorization domain (so that every t is a product of exactly one combination of elements of K):∑

deg t>1
P(t)⊂K

1

||t||
=

(
1 +

1

q
+

1

q2
+ . . .

)αq
− αq

q
− 1 =

(
1− 1

q

)−αq
− α− 1.

9



Substituting this into our inequality above gives the desired bound. �

Proposition 4.4. When q ≥ 3,∑
p∈Iq

deg p=1

F(A′p) ≤ max

{
1, eγ

∑
p∈Iq\A
deg p>1

g(p) + eγ
(

1− 2

(
1− 1

q

)q)}
.

Proof. We will show that the upper bound in Lemma 4.3 is maximized on [0, 1] at α = 0 or α = 1. Fix the
irreducible polynomials of degree at least 2 contained in A and define

C :=
∑

p∈Iq\A
deg p>1

g(p).

Recall from Lemma 4.3 that

C =
∑

p∈Iq\A
deg p>1

g(p) ≤
∑
p∈Iq

deg p>1

g(p) =

(
1− 1

q

)q
.

Thus C is independent of α and bounded between 0 and 1
e . Hence, we can treat C as a constant and prove

the claim for all possible values of C. Taking the second derivative of

(1− α) + Cαeγ + eγ
(

1− 1

q

)q ((
1− 1

q

)−αq
− α− 1

)
,

the upper bound in (6), with respect to α gives

eγ
(

1− 1

q

)q
log

((
1− 1

q

)−q)2(
1− 1

q

)−αq
.

This quantity is always positive, so our upper bound is maximized at an endpoint of [0, 1]. When α = 0, it
equals 1, and when α = 1, it equals

Ceγ + eγ
(

1− 1

q

)q ((
1− 1

q

)−q
− 2

)
,

so
∑
p∈Iq,deg p=1 F(A′p) is bounded above by the greater of these two values. �

By adding the upper bounds for F(A′p) with deg p > 1 to the upper bound obtained in Proposition 4.4,
we arrive at a final upper bound for our Erdős sum when q ≥ 3.

Theorem 4.5. For 3 ≤ q ≤ 19 we have F(A) ≤ eγ = 1.78107 . . . and for q > 19 we have

F(A) ≤ 1 + eγ
(

1− 1

q

)q
+

∑
p∈Iq

deg p>1

1

||p||(deg p+ 1)(deg p)
< 1 + eγ−1 +

π2 − 9

6
= 1.80015 . . . .

Proof. We can bound F(A) by summing over disjoint subsets of A, just as we did in the previous proposition:

F(A) =
∑
p∈Iq

deg p=1

F(A′p) +
∑

p∈Iq\A
deg p>1

F(A′p) +
∑

p∈Iq∩A
deg p>1

F(p).

<
∑
p∈Iq

deg p=1

F(A′p) + eγ
∑

p∈Iq\A
deg p>1

g(p) +
∑

p∈Iq∩A
deg p>1

F(p). (8)

Here, we have used Proposition 4.1 for the second term. If the first sum in the bound is greater than 1, then
we can bound it using Proposition 4.4 as∑

p∈Iq
deg p=1

F(A′p) ≤ eγ
∑

p∈Iq\A
deg p>1

g(p) + eγ
(

1− 2

(
1− 1

q

)q)
.
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We then bound the third sum using Proposition 3.4 as∑
p∈Iq∩A
deg p>1

F(p) =
∑

p∈Iq∩A
deg p>1

1

||p||deg p
≤

∑
p∈Iq∩A
deg p>1

1

||p||(deg p+ 1)

< 2
∑

p∈Iq∩A
deg p>1

eγ

||p||
∏
f∈Iq

deg f≤deg p

(
1− 1

||f ||

)

< 2eγ
∑

p∈Iq∩A
deg p>1

g(p).

Now, inserting both of these estimates and combining all three sums of (8),

F(A) < eγ
(

1− 2

(
1− 1

q

)q)
+ 2eγ

∑
p∈Iq

deg p>1

g(p)

≤ eγ
(

1− 2

(
1− 1

q

)q)
+ 2eγ

(
1− 1

q

)q
= eγ .

If instead, the first sum of (8) is at most 1, then we treat the third sum in that expression more delicately.
Since deg p > 1, we can bound the terms of this last sum with Proposition 3.4:

F(p) =
1

||p||deg p
≤ 1

||p||(deg p+ 1)
· deg p+ 1

deg p

<
eγ

||p||
∏
f∈Iq

deg f≤deg p

(
1− 1

||f ||

)
+

1

||p||(deg p+ 1)(deg p)

< eγg(p) +
1

||p||(deg p+ 1)(deg p)
.

Inserting this bound in the third sum of (8), combining it with the second sum, and applying Proposition
4.4 to the first sum, we have

F(A) < 1 + eγ
∑
p∈Iq

deg p>1

g(p) +
∑
p∈Iq

deg p>1

1

||p||(deg p+ 1)(deg p)

≤ 1 + eγ
(

1− 1

q

)q
+

∑
p∈Iq

deg p>1

1

||p||(deg p+ 1)(deg p)
. (9)

By numerically computing the sum over irreducible polynomials, we find that this bound is less than eγ for
all q ≤ 19. To obtain a bound independent of q, we can bound the third sum above as∑

p∈Iq
deg p>1

1

||p||(deg p+ 1)(deg p)
=

∞∑
n=2

π′q(n)

n(n+ 1)qn
<

∞∑
n=2

1

n2(n+ 1)
=

π2 − 9

6

and note that
(

1− 1
q

)q
increases with q to 1

e , which gives

F(A) < 1 + eγ−1 +
π2 − 9

6
= 1.800153 . . . . �

Our proof above fails when q = 2 because the inequality (7) in Lemma 4.3 no longer holds. However, it
becomes true if we introduce a correction factor of 2/eγ = 1.122918 . . .:

1

||t||deg t
≤ 1

2||t||
=

2

eγ
· e

γ

||t||

(
1− 1

2

)2

.

By modifying the propositions above to take this correction factor into account, we can obtain an upper
bound for the Erdős sum in the case q = 2.
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Theorem 4.6. When q = 2,

F(A) < 1 +
eγ

2
= 1.890536 . . . .

Proof. Because we are introducing a factor of 2/eγ in the right hand side of

1

||t||deg t
≤ eγ

||t||

(
1− 1

q

)q
,

our upper bound from Lemma 4.3 becomes∑
p∈Iq

deg p=1

F(A′p) ≤ (1− α) + αeγ
∑

p∈Iq\A
deg p>1

g(p) + 2

(
1− 1

q

)q ((
1− 1

q

)−αq
− α− 1

)
.

The right hand expression is still convex as a function of α by the same reasoning as Proposition 4.4, so∑
p∈I2

deg p=1

F(A′p) ≤ max

{
1, eγ

∑
p∈I2\A
deg p>1

g(p) + 2

(
1− 2

(
1− 1

2

)2
)}

. (10)

If
∑

p∈Iq
deg p=1

F(A′p) ≤ 1, then the same argument as in Theorem 4.5 when this sum is bounded by 1 applies,

and we can bound

F(A) ≤ 1 + eγ
(

1− 1

2

)2

+
∑
p∈I2

deg p>1

1

||p||(deg p+ 1)(deg p)
< eγ

as in (9). Otherwise, inserting the second bound in (10) into (8) and following as above yields

F(A) < 2

(
1− 2

(
1− 1

2

)2
)

+ 2eγ
(

1− 1

2

)2

= 1 +
eγ

2
. �

5. The Banks-Martin Inequality

Recall that the analogue of the Banks-Martin conjecture for Fq[x] states that

F(I1,q) > F(I2,q) > F(I3,q) . . . ,
where Ik,q represents the set of monic polynomials in Fq[x] with k irreducible factors counted with multi-
plicity. Analogously to the observation of Lichtman [8], we find that the conjecture is false for q = 2, 3, and 4
by direct numerical computation in Section 6.3. However, in this section we will show that for each k, there
exists qk such that the inequality holds up to F(Ik,q) for all q ≥ qk, and we will establish an upper bound
on the size of qk.

5.1. Bounds for π′q,k(n) and π∗k(n). Let π′k(n) denote the number of monic polynomials of degree n in
Fq[x] with k irreducible divisors including multiplicity. Since

F(Ik,q) =
∑
a∈Ik,q

1

||a||deg a
=

∞∑
n=1

π′k(n)

nqn
,

the growth of F(Ik,q) is determined by π′k(n). Similarly, if we let I∗k,q = {f ∈ Ik,q : f squarefree} and π∗k(n)

denote the number of squarefree monics of degree n with k irreducible divisors, then the growth of F(I∗k,q)
is determined by π∗k(n). Thus we can obtain bounds for F(Ik,q) and f(I∗k,q) by bounding their respective
counting functions π′k(n) and π∗k(n).

Proposition 5.1.

π∗k(n) ≤ 1

k!

∑
j1,...,jk

j1+...+jk=n

π′q(j1)π′q(j2) . . . π′q(jk).

Proof. π∗k counts polynomials of the form p1p2 . . . pk, where the pi are distinct irreducibles with degrees ji
such that j1 + . . . + jk = n. There are π′q(j1)π′q(j2) . . . π′q(jk) ways to choose k irreducibles with respective
degrees j1, . . . jk. However, this product includes in its count some non-squarefree polynomials, and for the
polynomials that are squarefree, there are k! different ways we can order them to obtain the same product.
Hence, summing over all tuples j1, . . . jk that sum to n and dividing by k! gives an upper bound for π∗k(n). �
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Proposition 5.2.

π′k(n) ≥ 1

k!

∑
j1,...,jk

j1+...+jk=n

π′q(j1)π′q(j2) . . . π′q(jk).

Proof. We can write each polynomial counted by π′k(n) as p1p2 . . . pk, where the pi are not necessarily
distnct irreducibles. There are π′q(j1)π′q(j2) . . . π′q(jk) ways to choose the irreducibles p1, . . . , pk with degrees
j1, . . . jk, and these irreducibles can be ordered in k! ways. However, if not all irreducibles are distinct, then
some reorderings will result in the same polynomial, meaning that dividing by k! undercounts the total
number of polynomials. Summing over tuples j1, . . . jk that sum to n gives a lower bound for π′k(n). �

5.2. An Upper Bound for F(Ik,q). In order to obtain an upper bound for F(Ik,q), we will first bound
F(I∗k,q) using our bounds for π∗k(n). We will use the following result of Mordell, stated in greater generality
than is needed here, as it will be useful for the computations in Section 6.2.

Theorem 5.3 (Mordell [10]). For any positive integer k and a > −k we have∑
1≤n1,n2,...,nk

1

n1n2 · · ·nk(n1 + n2 + · · ·+ nk + a)
= k!

(
1 +

1− a
1!2k+1

+
(1− a)(2− a)

2!3k+1
+ · · ·

)
(11)

= k!

∞∑
i=0

(−1)
i

(i+ 1)k+1

(
a− 1

i

)
,

where the sum ranges over all k-tuples of positive integers.

Remark 5.4. Note that when a = 0, the expression on the right in (11) is equal to k!ζ(k + 1), where
ζ(s) =

∑∞
n=1 1/ns is the Riemann zeta function. When a is a positive integer, the right hand sum is finite,

so the result is a rational number.

Proposition 5.5.
F(I∗k,q) ≤ ζ(k + 1).

Proof. By Proposition 5.1, we have

π∗k(n) ≤ 1

k!

∑
j1,...,jk

j1+...+jk=n

π′q(j1)π′q(j2)...π′q(jk).

Recalling that π′q(n) ≤ qn

n , we see that

F(I∗k,q) =

∞∑
n=1

π∗k(n)

nqn
≤ 1

k!

∞∑
n=1

∑
j1...jk

j1+...+jk=n

π′q(j1)...π′q(jk)

nqn
≤ 1

k!

∞∑
n=1

∑
j1...jk

j1+...+jk=n

1

nj1j2 . . . jk
.

By Theorem 5.3, this right hand sum equals ζ(k + 1), giving us the desired result. �

Proposition 5.6. For k ≥ 3,

F(Ik,q) ≤ ζ(k + 1) + log

(
q

q − 1

)
ζ(k − 1).

Proof. Proposition 5.5 gives us an upper bound for the Erdős sum over squarefree elements of Ik,q; all that
remains is to consider the contribution from the non-squarefree terms, which are polynomials of the form
p21p2 . . . pk−1, where the pi are not necessarily distinct irreducibles. If we let ji = deg pi, then there are at most
π′q(j1)π′q(j2) . . . π′q(jk−1) polynomials p21p2 . . . pk−1 whose factors have the corresponding degrees j1, . . . jk−1.
Hence our sum over non-squarefree terms is bounded above by

∑
j1...jk−1

π′q(j1) . . . π′q(jk−1)

(2j1 + j2 + . . .+ jk−1)q2j1+j2+...+jk−1
≤

∑
j1...jk−1

1

j1j2 . . . jk−1(j1 + . . .+ jk−1)qj1

≤
∑
j1

1

j1qj1

∑
j2...jk−1

1

j2 . . . jk−1(j2 + . . .+ jk−1)

= log

(
q

q − 1

)
ζ(k − 1),
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where once again we have used Theorem 5.3 to obtain the last equality. Note that the second line requires
k ≥ 3. Combining our bounds for the squarefree and non-squarefree elements in Ik,q yields a total upper
bound of

ζ(k + 1) + log

(
q

q − 1

)
ζ(k − 1).

�

Since log( q
q−1 ) decreases to zero as q tends to infinity, this upper bound gets arbitrarily close to ζ(k + 1)

whenever ζ(k − 1) converges. However, we will need a separate bound for k = 2.

Proposition 5.7.

F(I2,q) ≤ ζ(3) +
1

2
Li2
(

1

q

)
,

where Li2(x) =
∑∞
k=1

xk

k2 is the dilogarithm function.

Proof. The only elements in I2,q that are not squarefree are the squares of irreducibles, which contribute

∑
f∈Iq

1

||f2||deg(f2)
=

∞∑
n=1

π′q(n)

2nq2n
≤

∞∑
n=1

1

2n2qn
=

1

2
Li2
(

1

q

)
to the upper bound. Since the Erdős sum over the squarefrees is bounded above by ζ(3) by Proposition 5.5,

F(I2,q) = F(I∗2,q) + f(I2,q \ I∗2,q) ≤ ζ(3) +
1

2
Li2
(

1

q

)
.

�

5.3. A Lower Bound for F(Ik,q). Having established an upper bound for F(Ik,q), we now find a lower
bound for the same sum.

Proposition 5.8.

F(Ik,q) ≥
(

1−
√
q

q − 1

)k
ζ(k + 1).

Proof. By Proposition 5.2, we have

F(Ik,q) ≥
1

k!

∞∑
n=1

∑
j1+...+jk=n

π′q(j1)...π′q(jk)

nqn
.

Expanding this out using the lower bound from Proposition 2.1 gives

F(Ik,q) ≥
1

k!

∞∑
n=1

∑
j1+...+jk=n

(qj1 − q
q−1 · q

j1/2)...(qjk − q
q−1 · q

jk/2)

nj1...jkqn
.

Factoring out qj from each term in the numerator, the right hand sum becomes

F(Ik,q) ≥
1

k!

∞∑
n=1

∑
j1+...+jk=n

(1− q
q−1 · q

j1/2)...(1− q
q−1 · q

jk/2)

nj1...jk
.

As ji ≥ 1 for all i, we can bound the sum below by

1

k!

∞∑
n=1

∑
j1+...+jk=n

(1− q
q−1 · q

1/2)k

nj1...jk
=

(
1−

√
q

q − 1

)k
1

k!

∞∑
n=1

∑
j1+...+jk=n

1

nj1...jk

=

(
1−

√
q

q − 1

)k
ζ(k + 1)

where the last step uses Theorem 5.3. �
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5.4. The Banks-Martin Inequality for Fixed k. The upper and lower bounds for F(Ik,q) established
in Propositions 5.6 and 5.8 both approach ζ(k + 1) as q increases. Because ζ(n) > ζ(n + 1), it follows that
for each k ∈ N, there exists qk such that the following chain of inequalities holds in Fq[x] for all q ≥ qk:

F(I1,q) > F(I2,q) > . . . > F(Ik,q).
In the following theorem, we establish how large qk must be in order to guarantee that this chain of

inequalities will hold.

Theorem 5.9. For each k ∈ N, there exists an integer qk = O
(
k24k

)
such that

F(I1,q) > F(I2,q) > . . . > F(Ik,q)

for all q ≥ qk. In particular, we have that qk < 4.03 (k − 1)2 4k ζ(k)2.

Proof. We first address the case k = 2, which must be handled separately because the bounds in Propositions
5.6 and 5.8 do not apply. Instead, we can use Propositions 2.2 and 5.7, which, along with the fact that

π2

6
− q

q − 1
Li2
(

1
√
q

)
> ζ(3) +

1

2
Li2
(

1

q

)
for all q ≥ 11, are sufficient to prove that F(I1,q) ≥ F(I2,q) for all such q.

Now fix a natural number k ≥ 3. In order to find a value of q such that F(Ik′−1,q) > F(Ik′,q) for all
k′ ≤ k, it suffices to find q such that(

1−
√
q

q − 1

)k′−1
ζ(k′) > ζ(k′ + 1) + log

( q

q − 1

)
ζ(k′ − 1)

for all k′ ≤ k because of Propositions 5.6 and 5.8. Equivalently, we need(
1−

√
q

q − 1

)k′−1
ζ(k′)− ζ(k′ + 1)− log

( q

q − 1

)
ζ(k′ − 1) > 0.

It is not too difficult to show that the left hand expression is increasing in q, which implies that if the
inequality holds for qk then it holds for all q > qk. It is more challenging to show that the expression is
decreasing with respect to k′, but this can be accomplished for q ≥ 7 and k′ ≥ 4 using bounds on the forward
difference of the Riemann zeta function, as found in [1]. Hence if q ≥ 7 satisfies the inequality when k′ = k,
it will satisfy the inequality for all 4 ≤ k′ ≤ k. In fact, because the inequality holds when k = 3 and q = 413,
and we have already shown that F(I1,q) ≥ F(I2,q) for all q ≥ 11, the inequality holding for k′ = k implies
that it holds for all k′ < k as long as q ≥ 413.

Thus our task is as follows: given any k ≥ 4, we must find a value of q such that(
1−

√
q

q − 1

)k−1
ζ(k)− ζ(k + 1)− log

( q

q − 1

)
ζ(k − 1) > 0.

Bounding the coefficient of ζ(k) above by
(
1− (k − 1)

√
q

q−1
)
, we see it is sufficient to show that(

ζ(k)− ζ(k + 1)
)
− (k − 1)

√
q

q − 1
ζ(k)− log

( q

q − 1

)
ζ(k − 1) > 0.

From a special case of the principal result of [1], we know that

ζ(k)− ζ(k + 1) >
1

2k+1
.

Using this and the bound log
(

q
q−1
)
≤ 1

q−1 , this reduces to showing that

1

2k+1
− (k − 1)

√
q

q − 1
ζ(k)− 1

q − 1
ζ(k − 1) > 0.

Clearing out the denominators, we find the equivalent statement

(q − 1)− 2k+1(k − 1)ζ(k)
√
q − 2k+1ζ(k − 1) > 0.

Letting a = 2k+1ζ(k − 1) + 1 and b = (k − 1)2k+1 ζ(k), we need that q − b√q − a > 0. By the quadratic
formula, this inequality will be true for any

q ≥
√

4ab2 + b4 + 2a+ b2

2
.
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Because we seek an upper bound for qk, we can define the constant η to equal a/b2 for k = 4. Because a/b2

decreases exponentially in k, this means 4ab2 ≤ 4ηb4 and 2a ≤ 2εb2 for all k ≥ 4. Explicitly, η = 25ζ(3)+1
9·210ζ(4)2 =

0.00365.... Then

qk ≤
√

4ηb4 + b4 + 2ηb2 + b2

2
=

b2

2

(
1 + 2η +

√
1 + 4η

)
= (k − 1)24kζ(k)2 · 2

(
1 + 2η +

√
1 + 4η

)
will also be sufficient. The fact that ζ(k)2 = O(1) gives us that qk = O(k2 4k). The constant evaluates to
4.02919... < 4.03, which gives us the rest of the theorem. �

6. Computation of F(Ik,q)

As over the integers, the partial sums of F(Ik,q) converge very slowly once k ≥ 2. While it is possible
to compute these sums using the technique developed in [8] for the sums over the integers with k prime
factors, we develop a new method for estimating the size of the tails of these sums after precomputing the
counts of polynomials having at most k factors, all less than some degree N . Experimentally, this method
is able to compute the values of these sums much faster and with greater precision. The key idea will be to
use the more general form of Theorem 5.3. We start with a formula for computing the number of “smooth”
polynomials (smooth meaning that all of the divisors have degree smaller than some fixed bound) with a
fixed number of divisors.

6.1. Smooth polynomials with k irreducible factors. Let Ψ′k,q(n,m) denote the count of monic poly-
nomials of degree n with exactly k irreducible factors all of degree at most m.

Theorem 6.1. We can compute Ψ′k(n,N) from the values of π′(i) by the formula

Ψ′k,q(n,m) =
∑

`1+2`2+...+m`m=n
`1+`2+...+`m=k

m∏
j=1

(
`j + π′q(j)− 1

`j

)
,

where each `i is a nonnegative integer.

Proof. Fix n, k and m, and group the polynomials of degree n with k irreducible factors of degree at most m
according to the multiplicities of the degrees of their factors. That is, for any polynomial f we define its class
by the sequence {`j}, where `j := #{p ∈ I : p|f, deg p = j}. Conversely, each sequence of {`j} defines a class
of polynomials, which is included in our count if and only if {`j} satisfy

∑m
j=1 `j = k and

∑m
j=1 j`j = n.

Now it remains to count the number of polynomials in each such class. There are π′q(j) monic irreducible
polynomials of degree j, and we need to choose `j of them with repetition, where order does not matter.
The number of ways to select `j such irreducible polynomials of degree j with the potential for repetition is(`j+π′q(j)−1

`j

)
. Multiplying these terms then gives the number of polynomials contained in each class. �

6.2. Effective computation of F(Ik,q). We can expand on the idea of Section 2.1 to obtain an algorithm
which can rapidly compute the value of F(Ik,q) for any q and k. The key idea is to use the full generality of
Theorem 5.3 to estimate the size of the tail after approximating with a partial sum.

In this case, for a fixed N the values of π′q(n) are computed for all n ≤ N . Let d(f), D(f) and Ω(f)
denote, as before, the degrees of the smallest irreducible factor of f , the degree of the largest irreducible
factor of f and the total number of irreducible factors of f respectively. We then write

F(Ik,q) =
∑
f∈Ik,q

1

||f ||deg f
=

∑
f∈Ik,q
D(f)≤N

1

||f ||deg f
+

∑
f∈Ik,q
D(f)>N

1

||f || deg f
(12)

The first sum above is computed exactly, using the precomputed values of π′q(n), as

Sk,N,q =
∑
f∈Ik,q
D(f)≤N

1

||f ||deg f
=

∑
k≤n≤N

Ψ′k,q(n,N)

nqn
,

where the value of Ψ′k,q(n,N) is computed using Theorem 6.1.
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The second sum will be estimated using a combination of the precomputed values and estimates for the
tail using the “Mordell Sum”

M(k,N, a) =
∑

N≤n1,n2,...nk

1

n1n2 · · ·nk(n1 + n2 + · · ·+ nk + a)
. (13)

Note that when N = 1, the value of M(k, 1, a) is given by Theorem 5.3 as

M(k, 1, a) = k!

∞∑
i=0

(−1)
i

(i+ 1)k+1

(
a− 1

i

)
,

which for all a ≥ 0 will either be a rational number or a multiple of ζ(k+1). We can then recursively compute
values of this sum for larger values of N using the recurrence

M(k,N, a) = M(k,N − 1, a)− M(k − 1, N − 1, a+ (N − 1))

N − 1
+ · · ·

=

k∑
i=0

(−1)iM(k − i,N − 1, a+ i(N − 1))

(N − 1)i
,

which is obtained using an inclusion-exclusion argument over sums where the least allowed term is (N − 1).
We start by obtaining an upper bound for the rightmost sum in (12). We rewrite this sum as follows,

where
∑′ is used to denote that the innermost sum is evaluated over squarefree polynomials.

∑
f∈Ik,q
D(f)>N

1

||f ||deg f
=

k∑
i=1

∑
f∈Ik−i,q
D(f)≤N

∑′

g∈Ii,q
d(g)>N

1

||fg||deg fg
+

∑
f∈Ik,q

p2|f, p∈Iq
deg p>N

1

||f ||deg f

=

k∑
i=1

∑
n≤(k−i)N

Ψ′k−i,q(n,N)

qn

∑′

f∈Ii,q
d(f)>N

1

||f ||(deg f + n)
+

∑
f∈Ik,q

p2|f, p∈Iq
deg p>N

1

||f || deg f
. (14)

Consider the left hand sum above. By the same argument as in the proof of Proposition 5.1, we can bound
the innermost sum over squarefree polynomials by∑′

f∈Ii,q
d(f)>N

1

||f ||(deg(f) + n)
≤ 1

i!

∑
N<j1,...,ji

π′q(j1)π′q(j2) . . . π′q(ji)

qj1+j2+···+ji(j1 + j2 + · · ·+ ji + n)

≤ 1

i!

∑
N<j1,...,ji

qj1qj2 · · · qji
qj1+j2+···+ji(j1j2 · · · ji)(j1 + j2 + · · ·+ ji + n)

≤ 1

i!

∑
N<j1,...,ji

1

(j1j2 · · · ji)(j1 + j2 + · · ·+ ji + n)
=

1

i!
M(i,N + 1, n). (15)

Here we have used again Proposition 2.1 to obtain an upper bound for π′(j). We then bound the rightmost
sum of (14) over “squarefull” polynomials by∑

f∈Ik,q
p2|f, p∈Iq
deg p>N

1

||f ||deg f
≤

∑
p∈Iq

deg p>N

1

q2 deg p

∑
f∈Ik−2,q

1

||f ||deg f

= F(Ik−2,q)
∑
N<n

π′q(n)

q2n
< 2

∑
N<n

1

nqn
<

2

NqN+1(1− 1/q)
<

2

NqN
.
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Using this and (15) in (14), we get the bound∑
f∈Ik,q
D(f)>N

1

||f ||deg f
≤

k∑
i=1

∑
n≤(i−1)N

1

i!qn
Ψ′k−i,q(n,N)M(i,N + 1, n) +

2

NqN

= Rk,N,q +
2

NqN
. (16)

We can similarly get a lower bound. We start by writing∑
f∈Ik,q
D(f)>N

1

||f ||deg f
=

k∑
i=1

∑
f∈Ik−i,q
D(f)≤N

∑
g∈Ii,q
d(g)>N

1

||fg||deg fg

=

k∑
i=1

∑
n≤(k−i)N

Ψ′k−i,q(n,N)

qn

∑
g∈Ik,q
d(g)>N

1

||g||(deg g + n)

≥
k∑
i=1

∑
n≤(k−i)N

Ψ′k−i,q(n,N)

qn
1

i!

∑
N<j1,...,ji

π′q(j1)π′q(j2) . . . π′q(ji)

qj1+j2+···+ji(j1 + j2 + · · ·+ ji + n)
. (17)

This time we don’t restrict to squarefree polynomials, and the argument for the lower bound is the same as
that of Proposition 5.2. We use Proposition 2.1 to bound this innermost sum from below as∑

N<j1,...,ji

π′q(j1)π′q(j2) . . . π′q(ji)

qj1+j2+···+ji(j1 + j2 + · · ·+ ji + n)
≥

∑
N<j1,...,ji

(qj1 − q
q−1 · q

j1/2)...(qji − q
q−1 · q

ji/2)

qj1+j2+···+jij1...jk(j1 + j2 + · · ·+ ji + n)

=
∑

N<j1,...,ji

(1− q
q−1 · q

−j1/2)...(1− q
q−1 · q

−ji/2)

j1...ji(j1 + j2 + · · ·+ ji + n)

>
∑

N<j1,...,ji

1− i q
q−1 · q

−N/2

j1...ji(j1 + j2 + · · ·+ ji + n)

=

(
1− i q

q − 1
· q−N/2

)
M(i,N + 1, n). (18)

Inserting this in (17) gives∑
f∈Ik,q
D(f)>N

1

||f ||deg f
≥

k∑
i=1

(
1− iq1−N/2

q − 1

) ∑
n≤(i−1)N

1

i!qn
Ψ′k−i,q(n,N)M(i,N + 1, n)

= Rk,N,q −
q1−N/2

q − 1

k∑
i=1

∑
n≤(i−1)N

Ψ′k−i,q(n,N)M(i,N + 1, n)

(i− 1)!qn
.

Thus we can approximate F(Ik,q) ≈ Sk,N,q +Rk,N,q, with the effective bounds

q1−N/2

q − 1

k∑
i=1

∑
n≤(i−1)N

Ψ′k−i,q(n,N)M(i,N + 1, n)

(i− 1)!qn
≤ F(Ik,q)− Sk,N,q −Rk,N,q <

2

NqN
. (19)

6.3. Numerical Computations. Code was written in C++ to compute the bounds in (19) using MPFR
for multiple-precision floating-point computations with correct rounding. Using N = 80, we have computed
the values of F(Ik,q) for all k ≤ 64 and 2 ≤ q < 64 to at least ten decimal places, and we have computed
various special cases with more accuracy to higher values of k. The results for q < 7 are documented in the
tables of Appendix 6.3.

From these computations we find that the analogue of the Banks-Martin conjecture is false for q = 2, 3,
and 4. In particular, we see that the sequence F(Ik,2) has a local minimum at k = 4 of F(I4,2) = 0.956237 . . ..
Similarly, F(Ik,3) has a local minimum at k = 6 of F(I6,3) = 0.994968 . . . and F(Ik,4) has a local minimum
at k = 9 of F(I9,4) = 0.999781 . . ..

18



It seems highly likely that each of these values is in fact a global minimum, since the values appear to
increase monotonically to 1 as k → ∞. In fact, it appears that 1 − F(Ik,q) = O(2−k) in each case. This
agrees with the observations of Lichtman in the integers, where a global minimum in the sum F(Pk) was
observed at k = 6, with similar convergence to 1 as k →∞ [8].

Surprisingly for q ≥ 5, the behaviour appears to be quite different, with the numerical evidence suggesting
that the values of F(Ik,q) are monotonically decreasing to 1 as k →∞. Again we see the the same O(2−k)
convergence, just from above. For q = 5 we have verified that

F(Ik,5) > F(Ik+1,5) > 1

for all k < 100. Based on this evidence, we conjecture that the analogue of the Banks-Martin conjecture over
Fq[x] is still true in these cases.

Conjecture 6.2. For each q ≥ 5 the inequalities

F(I1,q) > F(I2,q) > . . . > F(Ik,q) > F(Ik+1,q) . . .

hold for all positive integers k.
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Appendix A. Numerical Data on F(Ik,q)

k F(Ik,2) F(Ik,3) F(Ik,4) F(Ik,5) F(Ik,7)
1 1.4676602238442289268 1.5402654962770992783 1.5708306089585806605 1.5876369878229405564 1.6055616864329830894
2 1.0644425954143168595 1.1301714500071343633 1.1544864845853626474 1.1668343411440889017 1.1790969073890668757
3 0.9755638525263773555 1.0329809138654179703 1.0517959064091933064 1.0606722482320695710 1.0689297642298799167
4 0.9562373433151932108 1.0039698809027713378 1.0178327413536777409 1.0239276909306761841 1.0292662613922721641
5 0.9581408226316153830 0.9960179423616558785 1.0057528618201179388 1.0097501408648004439 1.0130607223966467259
6 0.9661285846774159333 0.9949687972770260308 1.0015148661835156763 1.0040299319147160468 1.0060072704223504918
7 0.9747368549520022143 0.9959150552841082468 1.0001513629475453519 1.0016773165460739756 1.0028205606817957574
8 0.9820875563671306239 0.9971537408436136635 0.9998044985849281472 1.0007015961030813973 1.0013445588428900262
9 0.9877477647269600411 0.9981715655684219998 0.9997818901532824166 1.0002951481314120617 1.0006484376681192577
10 0.9918478580517178761 0.9988850772260466434 0.9998382721719850807 1.0001251569695533427 1.0003155548064037100
11 0.9946958995719092591 0.9993449618001374514 0.9998964608075082070 1.0000536550878474023 1.0001546392373837702
12 0.9966129963802004602 0.9996258781376391880 0.9999386341284465735 1.0000233235195754782 1.0000761897594317088
13 0.9978716414731367847 0.9997910525523849739 0.9999653236912439819 1.0000103050740808725 1.0000376910537044268
14 0.9986811586590295149 0.9998854079068883995 0.9999810267336057817 1.0000046345106376206 1.0000187023114699499
15 0.9991928200040364980 0.9999380941647140707 0.9999898540553063995 1.0000021220772785316 1.0000093007543809601
16 0.9995113928362548792 0.9999669753501071136 0.9999946649895369026 1.0000009884203117771 1.0000046327688406045
17 0.9997071495459197712 0.9999825683197510197 0.9999972297481776256 1.0000004675067009067 1.0000023102741326004
18 0.9998260439229729488 0.9999908809671412008 0.9999985750920124071 1.0000002240397871479 1.0000011530296441410
19 0.9998975071335135411 0.9999952655907561082 0.9999992723231812274 1.0000001085215464210 1.0000005757919164950
20 0.9999400604052216966 0.9999975577054795509 0.9999996304000129789 1.0000000530122567057 1.0000002876491601127
21 0.9999651849121454024 0.9999987469201610398 0.9999998130414889626 1.0000000260642202254 1.0000001437406709444
22 0.9999799048973557495 0.9999993600015746679 0.9999999057197182304 1.0000000128768650727 1.0000000718419078680

23 0.9999884683698132380 0.9999996743758878555 0.9999999525652106483 1 + 6.38426063× 10−9 1.0000000359113517749

24 0.9999934180456298710 0.9999998348554963871 0.9999999761751077814 1 + 3.17334132× 10−9 1.0000000179524406680

25 0.9999962619151749007 0.9999999164676982231 0.9999999880486329738 1 + 1.58018897× 10−9 1 + 8.97513258× 10−9

26 0.9999978868847903109 0.9999999578414305089 1− 5.98967599× 10−9 1 + 7.87869180× 10−10 1 + 4.48720120× 10−9

27 0.9999988106438072540 0.9999999787613648921 1− 2.99983553× 10−9 1 + 3.93173826× 10−10 1 + 2.24347823× 10−9

28 0.9999993332889212801 0.9999999893163745066 1− 1.50169185× 10−9 1 + 1.96327799× 10−10 1 + 1.12169815× 10−9

29 0.9999996276842568036 1− 5.36761349× 10−9 1− 7.51472174× 10−10 1 + 9.80759342× 10−11 1 + 5.60835373× 10−10

30 0.9999997928264723852 1− 2.69410095× 10−9 1− 3.75956001× 10−10 1 + 4.90081887× 10−11 1 + 2.80413107× 10−10

31 0.9999998851056604170 1− 1.35113624× 10−9 1− 1.88054855× 10−10 1 + 2.44940385× 10−11 1 + 1.40205024× 10−10

32 0.9999999364831266058 1− 6.77181711× 10−10 1− 9.40541670× 10−11 1 + 1.22436306× 10−11 1 + 7.01020012× 10−11

33 0.9999999649907064879 1− 3.39225102× 10−10 1− 4.70363487× 10−11 1 + 6.12067553× 10−12 1 + 3.50508301× 10−11

34 0.9999999807578865298 1− 1.69860734× 10−10 1− 2.35213727× 10−11 1 + 3.05995497× 10−12 1 + 1.75253582× 10−11

35 0.9999999894521671497 1− 8.50270680× 10−11 1− 1.17617865× 10−11 1 + 1.52984909× 10−12 1 + 8.76266014× 10−12

36 1− 5.76734033× 10−9 1− 4.25510590× 10−11 1− 5.88127058× 10−12 1 + 7.64881531× 10−13 1 + 4.38132374× 10−12

37 1− 3.14590853× 10−9 1− 2.12900347× 10−11 1− 2.94076429× 10−12 1 + 3.82426367× 10−13 1 + 2.19065976× 10−12

38 1− 1.71209148× 10−9 1− 1.06506036× 10−11 1− 1.47042613× 10−12 1 + 1.91208367× 10−13 1 + 1.09532917× 10−12

39 1− 9.29751061× 10−10 1− 5.32744564× 10−12 1− 7.35228032× 10−13 1 + 9.56025742× 10−14 1 + 5.47664354× 10−13

40 1− 5.03860521× 10−10 1− 2.66454275× 10−12 1− 3.67619095× 10−13 1 + 4.78007493× 10−14 1 + 2.73832098× 10−13

41 1− 2.72520970× 10−10 1− 1.33258396× 10−12 1− 1.83811268× 10−13 1 + 2.39001951× 10−14 1 + 1.36916023× 10−13

42 1− 1.47121001× 10−10 1− 6.66410782× 10−13 1− 9.19062162× 10−14 1 + 1.19500376× 10−14 1 + 6.84580029× 10−14

43 1− 7.92813803× 10−11 1− 3.33250407× 10−13 1− 4.59533045× 10−14 1 + 5.97499880× 10−15 1 + 3.42289985× 10−14

44 1− 4.26504673× 10−11 1− 1.66642213× 10−13 1− 2.29767184× 10−14 1 + 2.98749272× 10−15 1 + 1.71144983× 10−14

45 1− 2.29068075× 10−11 1− 8.33275164× 10−14 1− 1.14883815× 10−14 1 + 1.49374413× 10−15 1 + 8.55724884× 10−15

46 1− 1.22835430× 10−11 1− 4.16661672× 10−14 1− 5.74419826× 10−15 1 + 7.46871326× 10−16 1 + 4.27862431× 10−15

47 1− 6.57702289× 10−12 1− 2.08339867× 10−14 1− 2.87210164× 10−15 1 + 3.73435415× 10−16 1 + 2.13931212× 10−15

48 1− 3.51648112× 10−12 1− 1.04173311× 10−14 1− 1.43605166× 10−15 1 + 1.86717625× 10−16 1 + 1.06965604× 10−15

49 1− 1.87752411× 10−12 1− 5.20879158× 10−15 1− 7.18026118× 10−16 1 + 9.33587851× 10−17 1 + 5.34828020× 10−16

50 1− 1.00111662× 10−12 1− 2.60444270× 10−15 1− 3.59013154× 10−16 1 + 4.66793833× 10−17 1 + 2.67414008× 10−16

51 1− 5.33123741× 10−13 1− 1.30223878× 10−15 1− 1.79506608× 10−16 1 + 2.33396886× 10−17 1 + 1.33707004× 10−16

52 1− 2.83554554× 10−13 1− 6.51125852× 10−16 1− 8.97533150× 10−17 1 + 1.16698432× 10−17 1 + 6.68535018× 10−17

53 1− 1.50636558× 10−13 1− 3.25565316× 10−16 1− 4.48766610× 10−17 1 + 5.83492130× 10−18 1 + 3.34267508× 10−17

54 1− 7.99333712× 10−14 1− 1.62783540× 10−16 1− 2.24383317× 10−17 1 + 2.91746053× 10−18 1 + 1.67133754× 10−17

55 1− 4.23689501× 10−14 1− 8.13920956× 10−17 1− 1.12191662× 10−17 1 + 1.45873023× 10−18 1 + 8.35668770× 10−18

56 1− 2.24339638× 10−14 1− 4.06961675× 10−17 1− 5.60958326× 10−18 1 + 7.29365103× 10−19 1 + 4.17834385× 10−18

57 1− 1.18664036× 10−14 1− 2.03481277× 10−17 1− 2.80479167× 10−18 1 + 3.64682547× 10−19 1 + 2.08917192× 10−18

58 1− 6.27050108× 10−15 1− 1.01740799× 10−17 1− 1.40239585× 10−18 1 + 1.82341272× 10−19 1 + 1.04458596× 10−18

59 1− 3.31031937× 10−15 1− 5.08704588× 10−18 1− 7.01197931× 10−19 1 + 9.11706357× 10−20 1 + 5.22292981× 10−19

60 1− 1.74596623× 10−15 1− 2.54352509× 10−18 1− 3.50598967× 10−19 1 + 4.55853177× 10−20 1 + 2.61146490× 10−19

61 1− 9.20053753× 10−16 1− 1.27176333× 10−18 1− 1.75299484× 10−19 1 + 2.27926587× 10−20 1 + 1.30573245× 10−19

62 1− 4.84411532× 10−16 1− 6.35881953× 10−19 1− 8.76497422× 10−20 1 + 1.13963293× 10−20 1 + 6.52866226× 10−20

63 1− 2.54830597× 10−16 1− 3.17941081× 10−19 1− 4.38248711× 10−20 1 + 5.69816468× 10−21 1 + 3.26433113× 10−20

64 1− 1.33947884× 10−16 1− 1.58970578× 10−19 1− 2.19124356× 10−20 1 + 2.84908234× 10−21 1 + 1.63216556× 10−20

65 1− 7.03522828× 10−17 1− 7.94853029× 10−20 1− 1.09562178× 10−20 1 + 1.42454116× 10−21 1 + 8.16082782× 10−21

66 1− 3.69223163× 10−17 1− 3.97426564× 10−20 1− 5.47810891× 10−21 1 + 7.12270584× 10−22 1 + 4.08041391× 10−21

67 1− 1.93632388× 10−17 1− 1.98713300× 10−20 1− 2.73905445× 10−21 1 + 3.56135292× 10−22 1 + 2.04020695× 10−21

68 1− 1.01474020× 10−17 1− 9.93566566× 10−21 1− 1.36952722× 10−21 1 + 1.78067646× 10−22 1 + 1.02010347× 10−21

69 1− 5.31408628× 10−18 1− 4.96783306× 10−21 1− 6.84763614× 10−22 1 + 8.90338230× 10−23 1 + 5.10051739× 10−22

70 1− 2.78104424× 10−18 1− 2.48391661× 10−21 1− 3.42381807× 10−22 1 + 4.45169115× 10−23 1 + 2.55025869× 10−22

Table 1. Values of F(Ik,q) computed using the algorithm in Section 6.2. To obtain these values
we used N = 200 (q = 2), N = 150 (q = 3, 4) and N = 110 (q = 5, 7), and a precision of 256 bits.
Each number is accurate to as many decimal places as displayed and is truncated (not rounded).
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