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1. Summary of Thesis Work

My research is focused primarily on problems in analytic number theory, especially those
problems where analytic techniques can be used to answer number theoretic questions of a
combinatorial or probabilistic nature. In my thesis I improve upon existing results regarding
three general problems: Counting a subset of integers closely related to the Carmichael and
Lehmer numbers; the Ramsey-theoretic problem to study the densities of large subsets of
the integers which avoid geometric progressions; and the study of the distribution of the
largest prime factor of the integers up to x, determining in particular which prime occurs
most frequently.

1.1. Radically weakening the Carmichael and Lehmer conditions. Let ϕ(n) denote
the Euler totient function of n and λ(n) the size of the largest cyclic subgroup of (Z/nZ)×.
Lehmer [15] asked whether there exist composite integers n such that ϕ(n)|n−1. No “Lehmer
numbers,” integers satisfying this condition, are known. Luca and Pomerance [16] showed

the count of Lehmer numbers up to x is Oε

(
x1/2

(log x)1/2+ε

)
. Carmichael numbers are composite

numbers, n, which satisfy Fermat’s little theorem for every base a; that is, an ≡ a (mod n).
Carmichael [7] showed these integers satisfy a weakening of the Lehmer condition, namely a
composite integer n is Carmichael if λ(n)|n− 1. (Note λ(n)|ϕ(n) for all n.) Unlike Lehmer
numbers, it is known [1] there are infinitely many Carmichael numbers. Pomerance [29], [28]
gives an upper bound for the number, C(x), of Carmichael numbers up to x as well as a
heuristic that this bound is the true size of C(x), namely

(1.1) C(x) ≤ x1−{1+o(1)} log log log x/ log log x.

Grau and Oller-Marcén [13] suggest another possible weakening of the Lehmer property:
looking at the set Lk of composite n such that ϕ(n)|(n − 1)k as well as the union, L, of all
the Lk; that is the set of n where every prime dividing ϕ(n) also divides n− 1. This last set
is a weakening of both the Lehmer and Carmichael conditions, since every prime dividing
ϕ(n) also divides λ(n).

In [19] I resolve several conjectures of Grau and Oller-Marcén by showing that the count,
L(x), of the count of integers in L up to x satisfies the same upper bound (1.1) as C(x). I
also give upper bounds for the count of integers in Lk up to x for each k > 1 and the count
of those integers in L which are the product of a fixed number of primes.

In that paper I conjecture, based on strong numerical evidence, that there are infinitely
many members of L which are not Carmichael. Utilizing the recent progress by Maynard [17]
and Tao [26] on the prime k-tuples conjecture, Tom Wright and I, in very recent work [21],

show this is in fact the case. Moreover, we show that L(x)� x
1
2
−o(1) (note the best known

lower bound for the Carmichael numbers is C(x) � x
1
3 ), that there are infinitely many

members of L with any fixed number (at least 2) of prime factors, and that Lk contains
infinitely many integers for each k ≥ 3.

1.2. Avoiding geometric progressions in the integers. A well known problem in com-
binatorial number theory is to study sets of integers which do not contain an arithmetic

progression (AP). For A ⊂ N, denote its density by d(A) = limN→∞
A∩[1,N ]

N
(if the limit

exists), and upper density by d̄(A) = lim supN→∞
A∩[1,N ]

N
. Roth famously proved that if
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d̄(A) > 0 then A contains a 3-term AP. His argument shows further [32] that any subset of

Z/nZ free of 3-term APs has size O
(

n
log logn

)
. His result has been improved many times;

Sanders [34] improved it to O
(
N(log logn)5

logn

)
. Szemerédi [36] and Furstenberg [12] indepen-

dently generalize Roth’s result to arbitrarily long APs.
In a completely analogous manner, one can consider a geometric progression (GP) of

integers of the form (a, ak, ak2) for k ∈ Q and seek sets which are free of such progres-
sions. It is surprising just how different the results are in this case. This problem was
first considered by Rankin [30] who showed that there exists a set, G∗3, free of geometric

progressions with asymptotic density d(G∗3) = 1
ζ(2)

∏
i>0

ζ(3i)
ζ(2·3i) ≈ 0.71974. (Here ζ is the

Riemann zeta function.) We will use the notation α = sup{d̄(A) : A ⊂ N is GP-free} and
α = sup{d(A) : A ⊂ N is GP-free and d(A) exists} for sets free of progressions with rational
ratio and the constants β and β defined analogously for sets which avoid progressions with
integral ratio. Thus d(G∗3) ≤ α ≤ α, β ≤ β.

Many authors have studied upper bounds for α. Riddell [31] showed that α ≤ 6/7. This
bound was reproved by Beiglböck, Bergelson, Hindman, and Strauss [4], who were unaware
of Riddell’s result. Their result was an improvement of a bound by Brown and Gordon [6]
who, also unaware of Riddell’s result, had shown α < 0.86889. Nathanson and O’Bryant [24]
combined these methods to show α < 0.84948. Beiglböck, et al. [4] appear to have been the
first to consider β, and show that β ≥ 0.75.

In [20] I improve on many of the results above. I demonstrate an algorithm to effectively
compute the values of both α and β and use this to significantly improve the best known
bounds for each. In particular, I show 0.730027 < α < 0.772059 and 0.815509 < β <
0.819222. The lower bound for β comes from a different construction which utilizes the fact
that a geometric progression with integral ratio cannot have more than one term in a short
interval. This construction has since been pursued further by Nathanson and O’Bryant [25]
to study sets of real numbers avoiding progressions with integral ratio. Ford improves upon
my construction by carefully choosing integers in one of the intervals to be coprime to small
primes, thus obtaining the bound 0.818410 < β.

Thus far Rankin’s set, G∗3, obtained by greedily including integers which avoid progres-
sions with rational ratio, has the greatest asymptotic density of sets avoiding rational-ratio
progressions. Interestingly, if one restricts to integer ratios and constructs the set greedily
avoiding such progressions, the resulting set is the same as for rational ratios. Prior to my
work this greedy set also had the highest known density among sets avoiding integral ra-
tios, however I construct a set which does so with a slightly greater density, showing that
0.72195 < β. Towards an upper bound for α or β, I use the logarithmic density to show that
a set with asymptotic density cannot do better than the greedy set while avoiding ratios
which are a power of two. This greedy set has an asymptotic density approximately 0.84539,
strictly less than the optimal upper density, about 0.84638.

In the spirit of Roth’s theorem for subsets of Z/nZ avoiding arithmetic progressions, I
consider the problem of finding subsets of Z/nZ which avoid geometric progressions. In
contrast to the results over N, I show that it is not possible to take a positive proportion of

the residues modulo n in this case. In fact the largest such subset has size O
(
n(log logn)5

(logn)1/2

)
.

1.3. Finding the most popular values of the largest-prime-divisor function. Let
P (n) denote the largest prime factor of n. Several authors have investigated the distribution
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of P (n) for n ∈ [2, x]. Erdős and Alladi [3] showed that the mean is given by 1
x

∑x
n=2 P (n) =

(1+o(1)) π2x
12 log x

. De Koninck and Ivić [10] give an expression with lower order terms, (Naslund

[22] worked out explicit values of the dm)

1

x

x∑
n=2

P (n) =
π2x

12 log x
+

d2x

log2x
+ · · ·+ dmx

logmx
+O

(
x

logm+1x

)
.

The median value of P (n), for n ∈ [2, x], given as x1/
√
e+o(1), first appeared in a paper

of Selfridge and Wunderlich [35] in 1974, though this fact had been known since at least
the early 20th century. Naslund [23] showed that this median is given more accurately by

e
γ−1√
e x

1√
e

(
1 +O

(
1

log x

))
. The fact that the median grows so much slower than the mean is

somewhat indicative of just how strongly right skewed this distribution is. In fact, letting
fx(p) = #{n ≤ x : P (n) = p}, De Koninck showed [9] that for fixed x the maximum value
of fx(p) is attained by a prime p satisfying

p = e

√
1
2

log x(log log x+log log log x)+O
(√

log x
log log x

)
.

Furthermore, he and Sweeney show [11] that fx(p) is increasing on the primes in the interval
[2,
√

log x] and decreasing for [
√
x, x]. I am interested in better understanding the behavior

in between these two intervals, and in particular the location of the maximum value, as well
as the set of primes which achieve this maximum for some value of x.

In ongoing work [18] I show that fx(p) is maximized by a prime p satisfying

(1.2) p = e
√
υ(x) log x+O((log log x)1/4)

where υ(x) is the solution to eυ(x) =
√
υ(x) log x− υ(x)2. Standard techniques of asymptotic

approximation give that υ(x) = 1
2

log log x + 1
2

log log log x − 1
2

log 2 + o(1). As the location
of this maximum value tends, slowly, to infinity, one might expect that every prime is the
maximum value of fx(p) for some x. This turns out not to be the case, for example 11 is
not at the peak of this distribution for any x. Define a popular prime to be a prime which
achieves the maximum value. In particular, a prime p is popular if there exists an N for
which p is the mode of P (n) for n ∈ [2, N ].

Not only are there primes, like 11, which are not popular, but in fact the popular primes
have relative density zero in the primes. I use analytic techniques to show that if pn and
pn+k, the primes indexed by n and n+ k respectively, are both popular then 1

k
(pn+k − pn) =

log pn+k + O(log log pn+k). In other words, the difference between pn and pn+k must be
remarkably close to the average spacing. When k < (log pn)2/3 is small, finding primes this
close to the average spacing is very unusual and so, using sieve techniques, I show that the

number of popular primes up to x is O
(

x
(log x)4/3+o(1)

)
. On the other hand, due to the error

term in (1.2) this count is at least C log x
(log log x)1/4

for some constant C. There clearly remains

a huge gap between these bounds!

2. Future directions

The work described above can be extended in a variety of ways, and there remains several
important unsolved problems. Regarding the first problem, generalizing the Carmichael and
Lehmer conditions, I conjecture in [19] not only that the difference L(x)−C(x) of the count
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of the number of Carmichael numbers from the integers in L tends to infinity (we answer

this in the affirmative in [21]) but that the ratio L(x)
C(x)

does as well. This question will likely

be much harder, however it would be interesting to obtain better lower bounds for L(x)
and to better understand those members of L which do not arise from the prime k-tuples
construction, which should account for most of L.

It may be possible to further exploit the recent results on primes in tuples to study the
sets Lk. It remains open whether L2 is infinite and bounds for the sizes of the Lk are far from
optimal. Techniques used by other authors to give upper bounds for the Lehmer numbers
might be useful here. It would also be nice to understand how Carmichael numbers are
distributed in the sets Lk.

Regarding sets avoiding geometric progressions, I list several open problems in [20] which
would be very interesting to pursue further. While the constants α and β are now com-
paratively well understood, α and β are not. The best upper bound for each remains the
bounds for α and β, though presumably the true values are significantly smaller. It would
be interesting to see if there is a way the arguments I develop using logarithmic density to
study sets avoiding ratios that are powers of two could be extended to prove that α is strictly
less than α. Likewise for β and β. While there is reason to believe Rankin’s set gives the
true value of α, I have shown this is not the case for β by giving an explicit construction
of a set with higher density. This example was found computationally, however, so there
remains much to be understood as to how one can tweek Rankin’s set slightly to create such
examples, and what the limit of such constructions might be.

Another natural question is to consider geometric progressions of length greater than 3.
Many authors already study progressions of arbitrary length, however I chose for the sake of
clarity to focus on the case of 3-geometric progressions in my paper. While the algorithms I
describe to compute α and β should apply to progressions of arbitrary length, other results
will be more complicated. For example, as Riddell [31] discusses, the structure of the greedy
set is far more complicated for composite-length-progressions: the construction given by
Rankin [30] is not optimal in that case.

In [25] Nathanson and O’Bryant use the construction I give for large sets of integers
avoiding integral ratios using intervals to study subsets of the real numbers which avoid
geometric progressions. They consider progressions of length greater than 3 and give a table
of the optimal intervals to take for progressions of length up to 9 and denominators up to
10,000. However “Ford’s trick” of taking the integers in certain intervals to be coprime to
small primes has no analogue over the reals, and it remains to be seen if it is useful when
avoiding longer integral ratio progressions in Z.

One can also consider geometric progressions in more general rings. In the summer of
2014 I worked with a team of undergraduate students at the Williams College REU [5] to
generalize my work to the ring of integers over a number field. We characterized the greedy
sets of integers (or ideals in a non-UFD) for quadratic number fields and give bounds for the
upper density of a set of algebraic integers (or ideals) avoiding 3 term geometric progressions
which depend on the splitting behavior of the small primes. This work relies critically on
the fact that we have unique factorization in the ring of integers (or ideals) in the number
field. It is not yet clear, for example, what the greedy set of algebraic integers (not ideals)
avoiding geometric progressions in an imaginary quadratic number field with class number
greater than one would look like. One could likewise look at geometric progressions in other
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rings where useful properties of the integers no longer hold, for example in SL2(Z) or the
Hurwitz order of integral quaternions where commutativity fails.

This sort of problem is well suited for undergraduate research as it can be easily motivated
and the combinatorial techniques involved can be picked up relatively easily by advanced
undergraduate students while introducing them to concepts, like number fields, Euler prod-
ucts, and unique factorization, they are unlikely to encounter otherwise. I plan to continue
involving undergraduates in as many aspects of this research as possible.

Finally, the work on the popular primes is rich with potential for further research. The
present upper and lower bounds for their count clearly leave much room for improvement.
These bounds appear to be the best one can obtain using the work of Hildebrand [14] and
Alladi [2] to estimate the count, Ψ(x, y), of y-smooth integers up to x. Saias [33] gives a
much better approximation of Ψ(x, y) in terms of a function, Λ(x, y), first introduced by de
Bruijn. This function is notoriously difficult to work with, however if its behavior could be
better understood near the critical value of y for a given x, it could lead to a much better
understanding of the popular primes.

One can also consider generalizations of the popular primes. De Koninck considered the
most popular value of the k-th largest prime divisor, and showed it is always 3 for all
k ≥ 2 and sufficiently large x. On the other hand, one could consider the second most
popular values of P (n) and the set of primes, the “runner up primes”, which achieve this
rank without being popular. This readily generalizes to any fixed rank. Assign a “popularity
index” to each prime corresponding to the highest rank it achieves in the count of the largest
prime divisors on [2, x] for any value of x. Thus, the popular primes would be precisely those
primes with popularity index one. It would be highly interesting to see if the primes with
bounded rank are sparsely distributed within the primes, or if there is a radical change in
behavior when going from k = 1 to k ≥ 2 as in De Koninck’s problem.

Determining which primes are in fact popular is a computationally difficult problem. As
far as we can compute so far they contain all of the convex primes, which are the vertices of
the convex hull of the points (n, pn) ∈ R2. Pomerance [27] showed the count of the convex
primes up to x is at least exp

(
c(log x)3/5

)
for some c > 0. He used this to show that the set

of primes which satisfy the inequality pn−i + pn+i > 2pn for all i < n (of which the convex
primes are a subset) is also infinite. Thus far every popular prime except 773 also has this
property. It would be interesting to better understand the connection between these sets,
especially since the convex primes are far easier to count.

A step in many factoring algorithms is to choose y-smooth integers up to x until the
product of a subset of them is a square. The expected number of trials to pick a y-smooth
integer is x

Ψ(x,y)
and having π(y)+1 such integers forces a square dependence, so the optimal

value of y minimizes xπ(y)
Ψ(x,y)

≈ xy
Ψ(x,y)

or equivalently, maximizes Ψ(x,y)
y

.

The analysis of this optimal smoothness bound is similar to that of the popular primes,
and in fact it is known [8] that the optimal smoothness bound satisfies an expression very
similar to equation (1.2). As such, the study of the popular primes may have applications
to the optimization of such factoring algorithms. In particular it could be useful to compare
the set of popular primes (which maximize Ψ (x/p, p) for some x) to the set of those “fast
primes,” p, which maximize Ψ(x, p)/p for some value of x. In [8] , the authors just fail to get
an asymptotic, and so far I don’t have one either for popular primes (see (1.2)). Can both
problems be solved with the same technique?
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