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Abstract. In 1977 Diaconis and Graham proved two inequalities relating different mea-
sures of disarray in permutations, and asked for a characterization of those permutations
for which equality holds in one of these inequalities. Such a characterization was first
given in 2013. Recently, another characterization was given by Woo, using a topological
link in R3 that can be associated to the cycle diagram of a permutation. We show that
Woo’s characterization extends much further: for any permutation, the discrepancy in
Diaconis and Graham’s inequality is directly related to the Euler characteristic of the
associated link. This connection provides a new proof of the original result of Diaco-
nis and Graham. We also characterize permutations with a fixed discrepancy in terms of
their associated links and find that the stabilized-interval-free permutations are precisely
those whose associated links are nonsplit.

1. Introduction

Many different metrics can be used to measure the disarray of a shuffled list. Treating
the list as a permutation π ∈ Sn, and denoting by πi the number in position i of π, some
popular metrics are:

• I(π) =
∑n

i=1#{j > i | πj < πi}, the number of inversions in π.
• D(π) =

∑n
i=1 |πi − i|, the sum of the absolute differences between the indices and

values of π (called Spearman’s footrule).
• T (π), the minimum number of transpositions required to produce π.

Notice that all three metrics are zero when π is the identity permutation. In 1849 Cayley
showed that T (π) is equal to n minus the number of cycles in π, i.e. T (π) = |π| − cyc(π)
where cyc(π) is the number of cycles in π.

The so-called Diaconis-Graham inequalities [4] relate these three metrics for any per-
mutation π:

I(π) + T (π) ≤ D(π) ≤ 2I(π). (1)

Diaconis and Graham give a simple proof of the second inequality, and permutations
where equality holds have a nice characterization: D(π) = 2I(π) if and only if π contains
no 3-inversions (a triplet i < j < k where πi > πj > πk, equivalently an occurrence of
the pattern 321). Their proof of the first inequality is not so intuitive, however, and they
don’t characterize when equality holds. Such a characterization was first given in 2013 by
Hadjicostas and Monico [6]. Building on their work, and results of the present authors,
Woo [12] gives a simpler, remarkable characterization of these permutations in terms of
their cycle diagrams and an associated link.

The “cycle diagram” (or cobweb plot) of a permutation π is obtained by plotting the
permutation as follows: For each index i, draw a vertical line from (i, i) to (i, πi), followed
by a horizontal line to (πi, πi). If i is a fixed point of π then there is an isolated point
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plotted at (i, i). Such a diagram allows a nice visualization of the cycle structure of the
permutation.

Figure 1. The cycle diagram of
the cycle 452613 along with the
associated knot, a trefoil.

After adding “decorations” at crossings, the cycle
diagram may be viewed as a knot (or link) diagram.
That is, considering lines in the diagram as strands
of a knot, at each crossing between a vertical line and
horizontal line we add the information that the ver-
tical line is crossing over the horizontal. Now, if each
isolated point (any fixed point of π) is made to rep-
resent a small disjoint and unlinked component, then
we may consider this a planar diagram of a link, which
we denote Lπ.

1

The method described here of associating a link to a permutation was first introduced
in [3], where it is shown that the count of the cycles of length n associated to an unknotted
planar diagram is enumerated by the large Schroeder numbers, and a generating function
is given for the sequence enumerating permutations associated to an unlink.2 Subsequently,
Woo [12] showed that a permutation π is associated to an unlink if and only if equality
holds in the first part of (1), i.e. I(π) + T (π) = I(π) + n− cyc(π) = D(π). In this paper
we show that this analogy extends much further.

Denote by χ(L) the Euler characteristic of a link L, a well-known link invariant which
is described in Section 2 below. We also introduce the function

x(π) := D(π)− I(π)− |π|,

which will be the primary permutation statistic of interest in this paper. This quantity
x(π) is essentially the difference between the two quantities in the first inequality of (1),
up to the number of cycles occurring in π, i.e. x(π) = D(π) − (I(π) + T (π)) − cyc(π).
Our main theorem describes the relationship between these two quantities.

Theorem 1.1. For any permutation π the difference x(π) = D(π)− I(π)− |π| is equal to
the negative Euler characteristic of the associated link, i.e.

x(π) = −χ(Lπ).

This result leads to a completely new proof of the first inequality of (1), described in
Section 3.

Corollary 1.2 (First Diaconis-Graham inequality). The inequality

I(π) + T (π) ≤ D(π)

holds for all permutations π, with equality holding precisely for those permutations whose
diagram corresponds to an unlink (for which the Euler characteristic equals cyc(π)).

We are able to similarly characterize those permutations π with a given number of
cycles where D(π) exceeds I(π) + T (π) by a fixed amount. The corollary below follows
immediately from Theorem 1.1.

1The term knot typically requires a single connected component, but a link may have multiple compo-
nents. This happens whenever the permutation doesn’t consist of a single cycle.

2An unlink is a link that is topologically the same as one in which each of the link components is a
round circle, and these circles bound disks that are pairwise disjoint.
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Corollary 1.3. For any integer k ≥ 0, the set of permutations π where D(π) exceeds
I(π) + T (π) by exactly k is precisely the set of permutations corresponding to links with
Euler characteristic χ(Lπ) = −k + cyc(π).

Before giving the proof of Theorem 1.1 in Section 5, we prove several lemmata in Section
4 that will be needed in the proof. From these results we obtain the following theorem,
which may be of independent interest.

A link L in R3 is called a split link if there exists a surface in R3, homeomorphic to
a 2-sphere, which is disjoint from L and has components of L in both its interior and
exterior. If no such surface exists, L is called non-split. We are able to characterize those
permutations corresponding to non-split links as follows.

Theorem 1.4. A permutation π corresponds to a non-split link Lπ if and only if π is a
stabilized-interval-free permutation.

The stabilized-interval-free permutations were defined and enumeratated by Callan [2].
See Section 4.1 for details. The following corollary then follows from his enumeration.

Corollary 1.5. The probability a randomly chosen derangement of n corresponds to a
non-split link tends to 1 as n → ∞.

2. Cycle Diagrams and Seifert Surfaces of Links

As discussed in the introduction, the cycle diagram of a permutation π may be decorated
with crossing information and viewed as a link diagram. We write Gπ for this decorated
cycle diagram and Lπ for the associated link in R3. If there are no fixed points of π, the
diagram Gπ is referred to in the literature as a grid diagram of the link (see [7] for a
survey).

Figure 2. The diagram Gπ,
where π = 367498251.

Standard definitions of grid diagrams do not allow for
isolated points, such as Gπ might contain on the diago-
nal. However, a grid diagram for Lπ is easily obtained by
replacing each isolated point by a small square contained
in adjacent rows and columns, thereby producing a grid
diagram with size |π|+#{fixed points}.

We orient the strands of Lπ so that vertical lines are
oriented away from the diagonal; tracing the diagram in
the order that π permutes its elements agrees with this
orientation of the link.

Each crossing in an oriented link diagram has a sign,
positive or negative. Our orientation convention causes every crossing in Gπ to be negative,
so every link Lπ is the mirror of a positive link. In addition, if L1 and L2 are two link
components of Lπ then the linking number (cf. [9, Chapter 5]) of L1 and L2 must be
non-positive, and is only 0 if the planar projections of L1 and L2 into Gπ are disjoint.

Proposition 2.1. For a permutation π, the link Lπ is a split link if and only if Gπ is
disconnected (as a subset of the plane).

Proof. The linking numbers of pairs of link components are a link invariant. Thus, given
a split link, for any of its components L1 that is on one side of the splitting sphere, L1

has linking number 0 with every component found on the other side of the sphere. Hence,
using the previous observation, there is a proper subset of the set of link components of Lπ
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whose planar projection in Gπ is disjoint from the projection of link components that are
not in this subset (i.e., Gπ is disconnected as a union of lines and points in the plane). □

Write cr(Gπ) for the number of crossings in Gπ. Another statistic of Gπ of interest is
the number of upper-right corners in the diagram: indices i, 1 ≤ i ≤ n, which satisfy both
π(i) < i and π−1(i) < i. Define s(Gπ) to be the number of upper-right corners plus the
number of fixed points of π. (Note: each small square replacing an isolated diagonal point
would have exactly one upper-right corner.)

Any link in R3 may be regarded as the boundary of an oriented surface embedded in
R3, a Seifert surface of the link. Given a diagram of the link (with orientation), Seifert
described an algorithm to determine such a surface ([10], cf. [9, Chapter 5]). Our manner
of proving the main result is informed by this algorithm, so we describe it here.

Given an oriented link diagram Z, remove each crossing in Z by changing how the
strands are connected in a neighborhood of the crossing, as in Figure 3 below. Note
that the change is made to be coherent with the orientation on strands outside of the
neighborhood. The result Ẑ is a union of oriented simple closed curves, no two of which
intersect, called Seifert circles. As we will use them again in the algorithm, we remember
the arcs on Seifert circles that were paired inside one of the neighborhoods.

Figure 3. Removing a crossing

Each Seifert circle bounds a disk, oriented so that the orientation on the Seifert circle
agrees with the induced boundary orientation. Place the disks in R3 at heights so that, if
Seifert circles S and S′ are such that S is in the interior of S′ (in the plane of the diagram),
then the disk for S is above the disk for S′.

Finally, for each crossing from Z we consider the associated arcs in Ẑ that were paired.
Viewing these arcs as part of the boundary of disks for Seifert circles, attach at those arcs
two opposite sides of a half-twisted band, as in Figure 4 (with the remaining, unattached,
part of the band’s boundary now agreeing with the original crossing strands from Z). This
completes the construction of the surface.

p

p

paired arcs in Ẑ

Figure 4. A band is attached with a half-twist; diagonal pattern repre-
sents the opposite side of the surface.

In Seifert’s original algorithm, if the surface is disconnected after attachment of half-
twisted bands then handles are added to connect the surface. This is needed when the
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link diagram is disconnected as a subset of the plane. In this paper, we leave the surface
disconnected in this case.3

Note that for a permutation π, the orientation convention and the fact that vertical
segments cross over horizontal in Gπ make the result of removing a crossing always ap-
pear the same (see Figure 5). A consequence is that, for any Seifert circle of Gπ, above
the diagonal it is (weakly) increasing in the vertical and horizontal directions; below the
diagonal it is decreasing in the vertical and horizontal directions. Thus, there is exactly
one upper-right corner and one lower-left corner on each Seifert circle. That is, s(Gπ)
equals the number of Seifert circles from the algorithm.

Smax

Figure 5. The grid diagram obtained from the permutation 68517324
and the Seifert circles obtained from the link diagram, with orientation
indicated by arrows. The circles surround each of the removed crossings.

Given a permutation π, we let Fπ denote the surface constructed from the grid diagram
Gπ through the algorithm above. The main result presented in this paper relates the value
of the permutation statistic x(π) = D(π) − I(π) − |π| to a numerical invariant of the
surface Fπ, namely the Euler characteristic of Fπ.

The Euler characteristic of a surface F may be defined via a triangulation of the surface
(see [11, pg. 85–87] for a brief, but informative, introduction to triangulations of surfaces).
If a triangulation of F has v vertices, e edges, and f faces, the Euler characteristic is
χ(F ) = v− e+ f . While the Euler characteristic of F may be computed this way, it is an
invariant of F and is independent of choice of triangulation.

To define the Euler characteristic of a link, we consider orientable surfaces having the
link as boundary. Were we to allow for any such surface, then the Euler characteristic
could be arbitrarily increased by adding a separate surface component that is a sphere
(and has no boundary). To avoid this pitfall, but still allow for disconnected surfaces, we
require that every surface component have a non-empty boundary.

Definition 2.2. We say that an orientable surface F is a (potentially disconnected) Seifert
surface of an oriented link L if every component of F has non-empty boundary and the
boundary of F (with induced orientation) agrees with L. The Euler characteristic of L,
written χ(L) is the maximal Euler characteristic of a Seifert surface of L.

A triangulation of Fπ may be chosen so that there is an edge corresponding to each
paired arc where the half-twisted bands were attached to a disk of a Seifert circle. Note
that a disk has Euler characteristic equal to 1. By choosing the triangulation to be such

3For the sake of clarity, we highlight the difference between components of a diagram Gπ and the link
components of Lπ ⊂ R3. For example, the diagrams depicted in Figure 6 each have a single connected
component; however, the associated link has 3 link components.
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that each of the half-twisted bands consists of exactly two triangles in the triangulation
(sharing one “diagonal” edge in the interior of the band), one may check that

χ(Fπ) = s(Gπ)− cr(Gπ). (2)

There is a relationship between grid diagrams and Legendrian links that is often ex-
ploited in the knot theory (and Legendrian knot theory) literature. We use this relationship
to see that Fπ has maximum Euler characteristic among Seifert surfaces of Lπ.

Proposition 2.3. If F is a Seifert surface of Lπ, then χ(F ) ≤ χ(Fπ), and so χ(Lπ) =
χ(Fπ).

Proof. Let G⟳
π be the grid diagram obtained by rotating Gπ clockwise 90◦, changing all

crossings to retain that vertical strands cross over horizontal. There is a Legendrian link
Λπ associated to G⟳

π which has the topological type of the mirror of Lπ (see [7]). One of
the classical invariants of a Legendrian link Λ is the Thurston-Bennequin number tb(Λ).
For the Legendrian Λπ, its value comes out as tb(Λπ) = cr(Gπ) − s(Gπ). Now, by the
Eliashberg-Bennequin inequality [5], we have tb(Λπ) ≤ −χ(F ) for any surface F with Λπ

as its boundary link (not allowing connected components of F to have empty boundary).
Since mirroring leaves the Euler characteristic of a surface unchanged, and noting that
−χ(Fπ) = cr(Gπ)− s(Gπ), we obtain the desired result. □

3. Proof of Corollary 1.2

From the classification of surfaces, a connected surface with one boundary component
has Euler characteristic at most 1 (and a connected surface with more than one boundary
component has Euler characteristic less than 1). Let F be an oriented surface with b
boundary components, such that every surface component has non-empty boundary. Since
χ(F ) equals the sum of the Euler characteristics of the connected components of F , we
have that χ(F ) ≤ b. Given a permutation π, if b is the number of cycles of π then b is also
the number of link components in Lπ. This provides a new proof of the Diaconis-Graham
inequality.

Corollary 3.1. Given any permutation π,

I(π) + T (π) = I(π) + |π| − cyc(π) ≤ D(π).

Proof. By Theorem 1.1,

D(π)− I(π)− |π|+ cyc(π) = −χ(Fπ) + b ≥ 0

since b = cyc(π) counts both the number of boundary components of the surface Fπ and
the number of cycles appearing in π. □

We also obtain a different proof of Alex Woo’s [12] characterization of the permutations
associated to an unlink.

Corollary 3.2. A permutation is associated to an unlink if and only if it is shallow as
defined in [1], namely D(π)− I(π)− |π|+ cyc(π) = 0.

This follows directly from Theorem 1.1. In particular, our Theorem implies that a per-
mutation is shallow if and only if −χ(Lπ) = −b; this occurs exactly when each component
of Fπ is a disk, implying Lπ is an unlink. Unlike the proof in [12] this approach doesn’t
rely on the original recursive characterization of shallow permutations given by Hadjicostas
and Monico.
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4. Lemmata

We define the direct sum of two permutations, σ ⊕ τ in the usual way, if σ is a permu-
tation of length m1 and τ is a permutation of length m2 then σ ⊕ τ is a permutation of
m1 +m2 given by

(σ ⊕ τ)(i) =

{
σ(i) 1 ≤ i ≤ m1

τ(i−m1) +m1 m1 < i ≤ m1 +m2.

Lemma 4.1. The direct sum of two permutations satisfies both

x(σ ⊕ τ) = x(σ) + x(τ)

and
χ(Lσ⊕τ ) = χ(Lσ) + χ(Lτ ).

Proof. It follows immediately from the definitions that both D(σ⊕ τ) = D(σ)+D(τ) and
I(σ ⊕ τ) = I(σ) + I(τ), and so the same holds for the function x. Since the component
of the diagram corresponding to σ is disconnected from the component corresponding to
τ , and our convention is to construct disconnected surfaces for each component of the
diagram of Gσ⊕τ , we find that

χ(Lσ⊕τ ) = χ(Fσ⊕τ ) = χ(Fσ) + χ(Fτ ) = χ(Lσ) + χ(Lτ ). □

The following lemma shows that a “translation” of a grid diagram and corresponding
permutation leaves both the link type and the statistic x(π) unchanged.

Lemma 4.2. For a permutation π ∈ Sn, and the permutation (in one line notation)
σ = 234 · · ·n1 ∈ Sn (note σ = (123 · · ·n) in cycle notation) define π′ = σπσ−1. Then the
link type of Lπ is the same as that of Lπ′ and also

x(π) = x(π′).

In the terminology of grid diagrams, the grid diagrams Gπ and Gπ′ are related by
two translations (one being horizontal and the other being vertical). By viewing the grid
diagram as being on a torus, identifying opposite edges of the square, the conjugation
action has the result of translating each column to the right by one, and each row up by
one. The original rightmost column (respectively topmost row) appears on the far left side
(bottom side) of the grid afterwards (see [7] for details and Figure 6 for an example).

Proof of Lemma 4.2. It is well known ([7]) that the translation operation on a grid diagram
leaves the associated link type unchanged. It then follows that Lπ and Lπ′ have the same
link type, and

−χ(Lπ) = −χ(Lπ′). (3)

Thus, we need only to show that x(π) = x(π′). Write out π = π1π2 . . . πn in one-line
notation and define a, b to be the integers such that πa = n and πn = b. We can express
the permutation π′ as π′ = π′

1π
′
2 . . . π

′
n, where

π′
k+1 = πk + 1, for 1 ≤ k ≤ n− 1, k ̸= a

π′
a+1 = 1

π′
1 = b+ 1.

In the edge case that a = n = b, the first line, indicating the value of π′
k+1, 1 ≤ k ≤ n− 1,

is unchanged; however, instead of the second and third line we have that π′
1 = 1.
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Figure 6. Successive applications of a horizontal and vertical translation
of the permutation and diagram obtained from π = 246198375 (resulting in
π′ = 635721948 and π′′ = 974683215). While the diagrams look relatively
different, one can check that each corresponds to the same link, and we find
that x(π) = D(π)−I(π)−|π| = 24−14−9 = 26−16−9 = 38−28−9 = 1
respectively in each of the figures above.

Now we may compute that

D(π′) =
n∑

i=1

|π′
i − i| = a+ b+

∑
1≤i<n
i ̸=a

|πi + 1− (i+ 1)|

= D(π) + 2a+ 2b− 2n

in the case when a ̸= n. If it is the case that a = n (and so b = n also) then

D(π′) =
n∑

i=2

|π′
i − i| =

n−1∑
i=1

|πi − i| = D(π),

since |π′
1 − 1| and |πn − n| are both zero.

In order to understand how the inversions change between π and π′, note that if i, j ̸∈
{a, n}, then (πi, πj) are in the same relative position to each other in π (i.e. whether πi is
left of or right of πj in one-line notation), as the relative position of (π′

i+1, π
′
j+1) in π′.

Since every πi ̸= b appears to the left of πn = b in π, we get that the two elements
πi, πn make an inversion if and only if πi > b, a total of (n− b) inversions in π that involve
πn. After translation, π

′
1 = b+ 1 is to the left of every other element in π′, so it makes an

inversion with π′
i+1 if and only if b + 1 > π′

i+1, a total of b inversions in π′ involving π′
1

(or 0 inversions in the case that b = n, since π′
1 = 1 in that case). Thus, if b ̸= n, then in

going from π to π′ there is a net change of b − (n − b) = 2b − n inversions involving the
element πn (in π) or π′

1 (in π′). In the edge case b = n, we get that there is a net change
of 0 inversions involving n (in π) and 0 involving 1 in π′.

We can make similar considerations for inversions that involve πa in π and π′
a+1 = 1 in π′

(assuming a ̸= n). One of these, already considered above, is the inversion involving πa, πn
that associate with the inversion in π′ involving π′

1, π
′
a+1. The net change in inversions

going from π to π′ involving the elements πa or π′
a+1 respectively is a− (n− a) = 2a− n.

When a ̸= n and b ̸= n, we have shown that

D(π′)− I(π′) = D(π) + 2a+ 2b− 2n− (I(π) + 2b− n+ 2a− n)

= D(π)− I(π).
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In the case that a = n (forcing b = n also), we have both D(π) = D(π′) and I(π) = I(π′).
Hence, we obtain the desired equality x(π′) = x(π). □

Lemma 4.3. The Seifert circles obtained from a connected component of a cycle diagram
admit a partial order under containment, and there is a unique maximal Seifert circle Smax

containing all of the others. Furthermore, each Seifert circle has a unique upper-right and
lower-left corner, and both are on the main-diagonal.

Proof. These results are all demonstrated in the proofs of Lemma 20 and Lemma 22
(and remark 21) of [3]. While the statements of these lemmas refer only to diagrams
corresponding to cycles, it is straightforward to see that all of the arguments go through
identically for any connected component of a diagram. □

We say that a permutation π stabilizes an interval I if π(i) ∈ I for every i ∈ I.

Lemma 4.4. The diagram Gπ of a permutation π is disconnected (i.e. the union of any
fixed points, vertical and horizontal segments of the diagram is disconnected as a subset of
the plane) if and only if the permutation π stabilizes a nontrivial subinterval I ⊂ [1, n].

Proof. It follows immediately that if π stabilizes an interval I, then a square drawn to
encompass the points on the diagonal corresponding to the integers in I will disconnect
the components of the diagram of π. So we focus on the reverse direction.

Suppose that the diagram of π is disconnected. This occurs if and only if there is a
simple closed curve in the plane, not intersecting any point on Gπ, which separates the
diagram into two (non-empty) sub-diagrams – one in the interior, the other in the exterior

of the closed curve. Call these sub-diagrams G
(1)
π and G

(2)
π . Note that the diagonal nodes

{1, . . . , |π|} are split into two subsets s(1)(π) and s(2)(π) (where i ∈ s(k)(π) if and only if

diagonal node i is part of G
(k)
π ).

Assume that 1 ∈ s
(1)
π . If s

(1)
π corresponds to an interval we are done, so suppose it does

not, and let n1, n2 ∈ s
(1)
π be the smallest pair of integers such that n2 > n1 + 1 and the

entire interval I = [n1 + 1, n2 − 1] ⊆ s
(2)
π . If π stabilizes I, then again we are done. So we

now suppose it does not and derive a contradiction, which will complete the proof.
If π does not stabilize I, then for some i ∈ I, π(i) /∈ I, and hence, π(i) > n2 (by

the minimality of n1, n2). Note that since the vertical line segment in G
(2)
π that extends

upward from i, extends above height n2, we have π−1(n2) > i (otherwise, i and n2 could

not be in disconnected sub-diagrams, as the horizontal segment of G
(1)
π that is at height n2

would intersect the vertical one extending upward from i). Thus π−1(n2) > n2. Similarly,
there must be j > n2 with π(j) ∈ I, and so, in order to avoid a crossing it must be that
π(n2) > n2. Thus, we find that the line segments adjacent to the point (n2, n2) form a
lower-left corner of some Seifert circle S1.

Appealing to Lemma 4.3, each Seifert circle has a unique lower-left and upper-right
corner (both of which lie on the main diagonal). We find that S1 must lie completely
inside the Seifert circle S2 that contains the line segments connected to the point (i, πi)
(whose lower left corner must have x-coordinate at most i < n2, and whose upper right
corner has y-coordinate at least πi > n2). Since the line segments connected to (i, πi) are

part of G
(2)
π , all of the line segments that were used to create S2 must also be part of G

(2)
π .

However, they completely surround the point (n2, n2), disconnecting it from the diagonal
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points at or below n1, which is not possible with G
(1)
π and G

(2)
π being separated by a simple

closed curve. □

4.1. Non-split links and stabilized-interval-free permutations. Callan [2] defined a
permutation π to be stabilized-interval-free if there is no nontrivial interval I ⊂ {1, 2, . . . |π|}
stabilized by π. He then showed that such permutations are enumerated by sequence
A075834 in the OEIS [8], the integer sequence whose generating function A(x) has the
property that the coefficient of xn−1 in A(x)n is n!.

Theorem 1.4, that the permutations whose diagrams correspond to non-split links are
precisely the stabilized-interval-free permutations, follows from Lemma 4.4 and Proposi-
tion 2.1.

Since the n-th term in the sequence A075834 is asymptotically n!
e

(
1− 1/n+O(n−2)

)
,

which is almost the same as that of the derangements (whose count is n!
e +O(1)), and of

which the stabilized-interval-free permutations are a subset, we find that the probability
a randomly chosen derangement of n corresponds to a non-split link tends to 1 as n → ∞,
as noted in Corollary 1.5.

5. Proof of Theorem 1.1

We will prove that x(π) = −χ(Lπ) by induction on the length of the permutation, |π|.
An interesting problem would be to find a non-inductive proof of this theorem.

For permutations of length at most 2, the result is immediate: in every case the corre-
sponding link Lπ is an unlink. (When π = 1 or π = 21, the permutation has a single cycle,
the link has a single component, and x(π) = −χ(Lπ) = −1. When π = 12 the permutation
and link have 2 cycles/components, and x(π) = −χ(Lπ) = −2.

We now suppose that the result holds for permutations of all lengths less than n and
that |π| = n > 2. For any permutation of length n one of the following cases hold:

• Case 1: The cycle diagram Gπ is disconnected.
• Case 2: The diagram Gπ is connected but there exists an index 1 < i < n such that
either πj ≤ i for all j < i or πj ≥ i for all j > i. (In this situation the outermost
Seifert circle touches the main diagonal at the index i.)

• Case 3: The diagram Gπ is connected and no index with the property described
in case 2 exists. (The outermost Seifert circle doesn’t touch the main diagonal,
except at the bottom left and upper right corners.)

In each case we will see that the result can be reduced to the case of permutations of
smaller length, which will complete the induction.

5.1. Case 1. Gπ is disconnected.

In this case, by Lemma 4.4, there exists a nontrivial subinterval I ⊂ [1, n] so that π
stabilizes I. By repeated application of Lemma 4.2 (if necessary) we can translate the
grid diagram of π to the grid diagram of another permutation π′ (with x(π) = x(π′) and
−χ(Lπ) = −χ(Lπ′)) such that the interval I has been translated to an interval, stabilized
by π′, of the form [a, n] for some integer a. Now, it is clear that π′ also stabilizes the
complementary interval [1, a− 1] and so π′ decomposes as a direct sum π′ = ρ⊕ τ . Since
both ρ and τ are permutations of length shorter than |π|, we are done by Lemma 4.1 and
induction.

https://oeis.org/A075834
https://oeis.org/A075834
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5.2. Case 2. The diagram Gπ is connected and there is an index 1 < i < n such that
either πj ≤ i for all j < i or πj ≥ i for all j > i.

We consider the case πj ≤ i for all j < i, the other case being similar. Let L be a
horizontal line drawn across Gπ at y = i + 1

2 . Since Gπ is connected, with components
both above and below this horizontal line, it must contain vertical line segments crossing
L. These vertical line segments must correspond to indices j where j and πj lie on opposite
sides of the value i+ 1

2 . Furthermore, as π is a permutation, there must be an equal number

of indices j < i+ 1
2 with πj > i+ 1

2 as there are j > i+ 1
2 with πj < i+ 1

2 .
Given our hypothesis that πj ≤ i for all j < i, there exists precisely one index j that

can satisfy the former property, namely j = i. Hence there exists also exactly one index
k > i with πk < i + 1

2 . Thus the diagram Gπ crosses L twice, once at i and again at k.
(Note that both of these line segments must be part of the outermost Seifert circle, Smax,
and that Smax therefore “touches” the diagonal at the point (i, i).) We now produce a
permutation π′, of length n+1, whose associated link corresponds to cutting the strands
along the line L and reattaching the two loose ends on either side.

This new permutation π′ = π′
1π

′
2 · · ·π′

nπ
′
n+1 is defined as follows. For 1 ≤ j < i define

π′
j = πj ; also, define π′

i = πk and π′
k+1 = i + 1. Finally, for i ≤ j ≤ n, j ̸= k, set

π′
j+1 = πj +1. Using that Gπ intersects L only at the vertical lines in positions i and k, it

is not hard to check that D(π′) = D(π) and I(π′) = I(π). For example, the construction
makes clear that if an inversion in π is at elements that are both in positions less than i,
or that both have positions greater than i, then there is a corresponding inversion in π′

(involving the same positions in the first case, and positions that are shifted by 1 in the
latter case). An inversion in π that involves positions i and j, for j > i, corresponds to
an inversion in π′ involving i + 1 and j + 1; in addition, inversions involving j, for some
j < i, and position k correspond to inversions in π′ at positions j and i.

Since |π′| = |π|+ 1, we have that x(π′) = x(π)− 1.

L

Figure 7. The cycle diagram of π = 541298637 along with the line L
corresponding to the index i = 5 satisfying the defining property of Case
2. To the right is the permutation π′ obtained after “cutting” along L.

Recall that part of the surface Fπ is a disk in a horizontal plane of R3, having Smax as
its boundary. Viewing L as being contained in that plane, the surface Fπ′ is homeomorphic
to the result of cutting Fπ along the line L. Consequently, the Euler characteristic changes
as χ(Fπ′) = χ(Fπ) + 1 (there is a triangulation so that the cut is along one edge between
two vertices on the boundary of the surface, cf. Figure 8; cutting can be seen to duplicate
the edge and the two vertices). Thus, the desired equality holds for π if and only if it holds
for π′.
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A B A B

Figure 8. Cutting Fπ along L: Let A,B be the points where L intersects
the boundary of the surface. A subdivision of a given triangulation will
have A and B as vertices. Remove all edges that intersect L, and vertices
(other than A and B) that intersect L as well as their incident edges.
What remains is a continuous image of a polygon with L as a secant from
one vertex to another. Triangulate this polygon with edges emanating only
from A and B.

Since Gπ′ is not connected, the argument from Case 1 allows us to decompose π′ as
ρ ⊕ τ . Additionally, π′ cannot have a fixed point. This implies that the length of ρ and
the length of τ are at most two less than |π′|; that is, max{|ρ|, |τ |} ≤ n− 1.

5.3. Case 3. The diagram Gπ is connected and no index with the property described in
Case 2 exists.

In this case, we construct a new permutation π′ with |π′| = |π| − 2. As we will see, the
key observation is that all of the line segments occurring in the cycle diagram of this new
permutation π′ are also present in the cycle diagram of π, but all of those line segments
in Gπ corresponding to the outermost Seifert circle have been removed. Furthermore, we
will see that π′ has the property that x(π′) = −χ(Fπ′) if and only if x(π) = −χ(Fπ).

Some preliminaries are needed in order to define π′ and prove that it has the desired
property. First, as in Case 2, the connected diagram Gπ has a unique maximal Seifert
circle Smax. To define π′ we need first to identify the columns in the diagram where Smax

has vertical line segments. These columns will necessarily be indexed by 1, n, and every
column in which Gπ has a crossing that creates a part of the Seifert circle Smax. Say that
there are a such crossings that are above the diagonal and b such crossings that are below
the diagonal.

Write i1 < i2 < · · · < ia for those columns where Smax has a crossing above the
diagonal. On the other side, write j1 > j2 > · · · > jb be the columns where Smax has a
crossing below the diagonal, written in decreasing order. Finally, define i0 = 1 = jb+1 and
ia+1 = n = j0.

Notice, by the hypothesis of Case 3 that no index with the property described in Case
2 exists, it is necessary that the outermost Seifert circle Smax touches the main diagonal
only at (1, 1) and (n, n), and so every vertical line segment of Smax is in one of the columns
indexed above. Thus, it must be that πia = n and πjb = 1.

Now, we define an intermediate permutation π̄ = π ◦ (ia ia−1 · · · i1 1 jb jb−1 · · · j1 n),
using cycle notation. Alternatively, the construction of π̄ can be made as follows. Beginning
from the one-line notation π = π1π2 . . . πn: move π1 into position i1, then move πi1 into
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Smax

Figure 9. The cycle diagram of π = 571928436 and its corresponding
Seifert circles. The Seifert circle Smax is labeled and drawn in blue (and
dash-dotted). In this case we have a = 2, b = 3, with i0 = 1, i1 = 2,
i2 = 4 and j0 = 9, j1 = 8, j2 = 5, j3 = 3. To the right is the permutation
π̄ = 152738469 = π ◦ (4 2 1 3 5 8 9).

position i2. Continue this way until moving πia = n into position ia+1 = n. Next, move
πn = πj0 into position j1, move πj1 into position j2, and so on. Finally, move πjb = 1
into position jb+1 = 1. No change is made to other elements in the one-line notation; the
resulting permutation is π̄.

The one-line notation π̄ = π̄1π̄2 . . . π̄n is the following.

π̄ℓ =


πik−1

if ℓ = ik for some 1 ≤ k ≤ a+ 1

πjk−1
if ℓ = jk for some 1 ≤ k ≤ b+ 1

πℓ otherwise.

(4)

Note that |π̄| = |π| and that π̄ fixes both 1 and n. The permutation π′, used in the
induction, is the permutation such that π̄ = id1 ⊕ π′ ⊕ id1 (where id1 is the identity
permutation on one element), and can be obtained from π̄ by setting π′

k = π̄k+1 − 1 for
1 ≤ k ≤ n− 2. Note, the link type of Lπ′ is generally different than the link type of Lπ.

As mentioned above, we have the following relationship between the Seifert circles of
Gπ and those of Gπ′ , the verification of which is left to the reader.

Lemma 5.1. The diagram Gπ′ is the result of removing Smax from Gπ (after only smooth-
ing the crossings on Smax).

Setting c = a+ b, so that c is the number of crossings of Gπ on Smax, we see that Gπ′

has exactly c fewer crossings than Gπ. It also has exactly one less upper right corner, the
one from Smax. Since −χ(Fπ) may be determined (2) as the number of crossings of Gπ

minus the number of upper right corners of Gπ (and likewise for π′), we get that

−χ(Fπ) + χ(Fπ′) = c− 1.

We may finish Case 3, and so complete the proof of Theorem 1.1, by showing that
x(π) − x(π′) = c − 1. The remainder of the paper is devoted to doing just this, with the
bulk of that effort focused on understanding how inversions in π compare to those in π′.

To begin, we consider certain sets of pairs of elements from π. Given 0 ≤ k ≤ a, define
Ak = {(πℓ, πik) : ik < ℓ < ik+1}. Given 0 ≤ k ≤ b, define Bk = {(πjk , π̄ℓ) : jk+1 < ℓ <
jk}, with the one exception that the pair (πn, n) is also in B0 (i.e., noting that j0 = n = π̄n,
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make the upper bound on ℓ be a weak upper bound for k = 0). Finally, define

A =
a⋃

k=0

Ak; B =
b⋃

k=0

Bk.

Regarding the definition of Bk note that if jk+1 < ℓ < jk, with ℓ ̸= ik′ for any k′, then
π̄ℓ = πℓ. If it is the case that ℓ = ik′ for some 1 ≤ k′ ≤ a then π̄ℓ = πik′−1

.

Lemma 5.2. Every ordered pair (p, q) ∈ A ∪B is an inversion in π.

Proof. Let k and ℓ be such that 0 ≤ k ≤ a and ik < ℓ < ik+1. In the case that k = a,
πik = n, and so it is clear that (πℓ, πik) is an inversion in π.

Now, for k with 0 ≤ k < a, there is a crossing of Gπ in the crossings corresponding to
Smax at grid coordinates (ik+1, πik). If it were the case that πik < πℓ for some ℓ with ik <
ℓ < ik+1 then the vertical line segment extending from index ℓ would create a crossing at
coordinates (ℓ, πik). But then a Seifert circle corresponding to this crossing would contain
a part of Smax in its interior, which contradicts Smax being maximal. Therefore, every
pair in A is an inversion in π.

The pair (πn, n) ∈ B0 is an inversion in π, as Gπ being connected requires that πn < n,
and (πn, n) = (πn, πia). Now, suppose that ℓ is such that, for some 0 ≤ k ≤ b we have
jk+1 < ℓ < jk and that ℓ ̸= ik′ for all 1 ≤ k′ ≤ a. Since π̄ℓ = πℓ in this case, a pair
(πjk , π̄ℓ) ∈ B is equal to (πjk , πℓ). That this is an inversion in π follows from an analogous
argument to the previous one for pairs in A.

Finally, suppose for some 0 ≤ k ≤ b there exists such a k′, so that jk+1 < ik′ < jk. Recall
that πik′−1

= π̄ik′ . We must have that π̄ik′ > ik′ since there is a crossing above the diagonal

at coordinates (ik′ , πik′−1
). Additionally, considering the crossing corresponding to column

jk+1, which is below the diagonal (or, that πjb = 1 = jb+1), we have πjk ≤ jk+1. Hence,
πjk ≤ jk+1 < ik′ < πik′−1

. Since ik′−1 < ik′ < jk, we see that (πjk , π̄ik′ ) = (πjk , πik′−1
) is

an inversion in π. □

The definition of the sets Bk, particularly the use of pairs having the form (πjk , π̄ℓ)
for jk+1 < ℓ < jk, rather than the form (πjk , πℓ), is convenient. On the one hand, it
ensures that we find certain inversions of π in A ∪ B – namely, pairs (πjk , πik′−1

) with
jk+1 < ik′ < jk that may exist. In addition, the definition helps by making A and B
disjoint.

Lemma 5.3. Let 0 ≤ k ≤ a and 0 ≤ k′ ≤ b. Then Ak ∩Bk′ = ∅.

Proof. Fix 0 ≤ k ≤ a and 0 ≤ k′ ≤ b and suppose (p, q) ∈ Ak ∩Bk′ . We have p = πjk′ and
q = πik . By the definition of Ak, we have ik < jk′ < ik+1 (preventing k′ from being 0). In
addition, q = π̄ℓ for some jk′+1 < ℓ < jk′ . However, q = πik = π̄ik+1

, and so ℓ = ik+1, a
contradiction. And so Ak ∩Bk′ = ∅. □

We note that, from their definition, it is clear that the sets Ak, 0 ≤ k ≤ a are themselves
pairwise disjoint; as are the sets Bk, k = 0, 1, . . . , b.

Lemma 5.4. Fix p, q with 1 ≤ p < q ≤ |π|. Then the relative position of p and q in π is
different than the relative position of p and q in π̄ if and only if

(p, q) ∈ A ∪B.
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Note that just as p < q in the statement, the definitions of Ak and Bk are such that
ordered pairs in these sets have a first coordinate that is less than the second coordinate.

Proof. We have already observed that each (p, q) ∈ A ∪ B is an inversion in π, meaning
that q appears to the left of p in π. If (p, q) ∈ Bk for some k, with q = π̄ℓ for some
jk+1 < ℓ < jk, then q appears to the right of p = πjk in π̄ since π̄jk+1

= πjk . Now, if
(p, q) ∈ Ak for some 0 ≤ k ≤ a, then πik appears in position ik+1 in π̄. Letting ℓ be such
that ik < ℓ < ik+1, then πℓ will either appear in position ℓ in π̄ or it will appear in a
position that is farther left (when ℓ = jk′ , since jk′+1 < jk′).

In both cases, q = πik appears to the right of p = πℓ in π̄. Thus, we may conclude that
the relative position of p and q does change if (p, q) ∈ A ∪B.

Suppose that p < q are elements such that the relative position of p and q in π is
different than their relative position in π̄. It must be that one of p and q, at least, has
position in π that is in {i0, i1, . . . , ia} ∪ {j0, j1, . . . , jb} (since elements in other positions
in π1π2 . . . πn do not change their position).

In the first case, let x = πik for some 0 ≤ k ≤ a, and that x equals one of p, q. Let y be
the other element of {p, q}. Considering the construction of π̄, x appears in π̄ farther to
the right than its position in π. For the relative position of x and y to change, y cannot be
in position ik′ for some 0 ≤ k′ ≤ a, since πik and πik′ have the same relative position in π
and π̄. Hence, y must appear in π̄ farther to the left than it appears in π, or in the same
position as in π. As a consequence, in π we have y appearing to the right of x; moreover, its
position is either left of ik+1 or equal to jk′ where jk′+1 < ik+1 ≤ jk′ (the weak inequality
needed when k′ = 0). In the first case, Lemma 5.2 and the fact that p < q together imply
that q = x = πik and p = πℓ for some ik < ℓ < ik+1; we find that (p, q) ∈ A. In the second
case we have that jk′+1 < ik+1 ≤ jk′ and x = πik = π̄ik+1

. By Lemma 5.2 (which implies
that πjk′ < π̄ik+1

), it must be that x = q and we conclude that (p, q) ∈ B.
The remaining case is that one of p, q is equal to πjk for some 0 ≤ k ≤ b, and that

the other is πℓ for some ℓ, and is such that πℓ = π̄ℓ. Since the relative position of p, q is
different in π̄ compared to in π, and πjk = π̄jk+1

, it must be that jk+1 < ℓ < jk. As shown
in Lemma 5.2, we must have πjk < πℓ, so p = πjk and q = πℓ = π̄ℓ. And so (p, q) ∈ B,
concluding the proof of the lemma. □

Let (p, q) be an ordered pair with p < q. By combining Lemma 5.2 and Lemma 5.4,
if (p, q) is not an inversion in π then it cannot be an inversion in π̄. We see that the
cardinality of A ∪B equals I(π)− I(π̄).

Let c = a+ b be the number of crossings in Smax. Using Lemma 5.3 we have

I(π)− I(π̄) =
a∑

k=0

|Ak|+
b∑

k=0

|Bk|

=
a∑

k=0

(ik+1 − ik − 1) + (j0 − j1) +
b∑

k=1

(jk − jk+1 − 1)

= (ia+1 − i0) + (j0 − jb+1)− (c+ 1)

= 2n− 3− c,

the last equation since ia+1 = n = j0, jb+1 = 1 = i0.
The total displacement of the permutation changes as follows. For each ik, 1 ≤ k ≤ a,

recall π̄ik = πik−1
. Since πik−1

< πik and also ik is less than both πik and πik−1
, we have
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|πik − ik| − |π̄ik − ik| = πik − πik−1
. In addition, |πi0 − i0| − |π̄i0 − i0| = πi0 − 1, since

π̄i0 = i0 = 1.
Similarly, we have |jk − πjk | − |jk − π̄jk | = πjk−1

− πjk for each 1 ≤ k ≤ b, and we have
|πj0 − j0| − |π̄j0 − j0| = n− πn. Putting this together,

D(π)−D(π̄) = πia − 1 + n− πjb = 2(n− 1).

Recall the permutation π′, defined so that π̄ = id1⊕π′⊕ id1. It is clear that D(π̄) = D(π′),
I(π̄) = I(π′), and |π̄| − |π′| = 2. Therefore,

x(π)− x(π′) = 2(n− 1)− (2n− 3− c)− 2 = c− 1,

proving what was needed for the induction step in Case 3.
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