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Abstract
For k > 3, we call a set G C (0,1] of real numbers k-good if G contains no ge-
ometric progression of length k with integer ratio r > 1. A real number z €
(0,1]\ G is called k-bad with respect to G if G|J{x} contains the k-term progression
(z,2r,xr?, .- 2r*~1) for some integer r > 1. Define Bad(G) = {x € (0,1]\ G :
x is k-bad with respect to G}. In 2015, Nathanson and O’Bryant showed there
exists a unique sequence of integers {1 = Agk) < Aék) < ---} such that G*®) =
U2, (1/A5 1748 | 1is a k-good set and Bad(G®)) = (J2, (1/A%) |, 1/A%]. The
(

)

) for 2 < i < 5 have previously been found by Nathanson, O’Bryant
and the second author. In this note, we obtain the value of Aék) and pose a related

problem.

values of A

1. Introduction

For an integer k > 3, we call a set G C (0, 1] of real numbers k-good if G contains
no geometric progression of length k with integer ratio » > 1. A real number
x € (0,1)\G is called k-bad with respect to G if there exists an integer r > 1 such that
G U{z} contains the k-term geometric progression (z,zr,zr?, - - - 7967“’“_1). Define

Bad(G) = {x € (0,1]\ G : z is k-bad with respect to G}.

L Corresponding author.
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In 2015, Nathanson and O’Bryant [3] proved the following theorem.

Theorem A ([3]). Fiz k > 3. There exists a unique strictly increasing sequence of
positive integers {Agk) < Aék) < ---} with Agk) =1 such that

e

21 2i—1

18 a k-good set and

Nathanson and O’Bryant also proved in [3] that Aék) = 2k-1 Agk) = 2% and

AW _ {2’“3’“_5_1 if there is a positive integer [ such that 2F~1 < 3! < 2k,
3=

3k—1 otherwise.

Afterwards, the second author determined the value of Aék).

Theorem B ([1]). Let k > 3 be an integer-
(i) If there is no integral power of 3 between 2~ and 2%, then

Aék) = 2k=1300FL  where i is the largest integer i such that 3° < 3F71/2k.
(ii) If there is a positive integer | such that 28~ < 31 < 2F then k > 4 and

(k) 200 if k=4,
A7 =9 hakl
k=13 if k> 5.

For the remainder of the paper we use the variable [ for the least integer such that
3! > 2F=1 This convention allows for a simpler statement of the above theorem.
The reader can check that case (i) above simplifies to the second case, and we get
the following, valid for all & > 3:

{200 if k=4,

AP = -
Qk—1gk—l — gk-1 (23z_1) otherwise.

5 =

Note that the value ﬁ is the upper limit of an interval of values that are bad
4
with respect to the set (1/A51k), 1/A:(3k)} U (1/Aék), 1} (write this set as G(Qk)) because

-1 . .
?,),—_1 is the ratio between 3,%1 and

of progressions with ratio » = 3. The ratio
777, the largest value that is excluded from ng). When # = gr—g—r = 1 /Aék),
the term 3F~la = 2,%1, and so the entire progression with ratio 3 starting at x is
no longer contained in G%.

In this note, we obtain the value of Aék).



INTEGERS: 22 (2022) 3

Theorem 1. Let k > 3 be an integer.
(i) If there is no integral power of 3 between 2~ and 2%, then

Aék) =2kF3%=L where 1 is the smallest integer such that 3' > 2",

(ii) If there is a positive integer | such that 28=1 < 3 < 2% and there is no integral
power of 4 between 4 - 3¥71=1 and 2 - 3571, then

A0 4k=1 " for even k,
6 7 22k-1 for odd k.

(iii) If there is a positive integer | such that 281 < 3! < 2% and there is a positive
integer m such that 4 - 387171 < 4™ < 2.3 then A((;l) =216 and

AR _ %4’“*’”3’“’1 for even k>4,
6 gr=m3k=t " for odd k.

Based on the above results, we pose the following problem.

Problem. For each positive integer i, do there exist infinitely many positive integers
k such that A% = (i + 1)k-12
One may refer to [2], [4] and [5] for related results.

2. Proof of Theorem 1

We first prove? that Aés) = 24 and Aé4) = 216. For k = 3, we know that Aék) =4,
Agk) = 8, Aflk) = 9 and Aék) = 12. For z € (&, 5], we have 1 < 22 < 1
%<3x§iandr2x>lforr24. So the set (% %]

G U (%, %] U (%, 1] is 3-good.
Furthermore, for z € (4, %6], we have % <2l =4a < 3z < tandr’z >1

for r > 5, and so the set
1 1 11 1
(24’12]U(9’8]U<4’

is also 3-good. However, for zg = i, we have 3xg = % and % < 329 < 1. Thus zg
is 3-bad with respect to the set (1), and so Aé?’) =24.

For k = 4, we know AY) =8, A =16, Al" = 48 and A = 200. For z €
(21T6’ 2(1)—0], we have that 2—30 <3z < 2%z =4z < %, while % <5%x < % and 3z > 1
for r > 6. When x¢ = ﬁ, we have 4—18 < bxg < Tlﬁ and % < 6%z < 6329 = 1. Thus,

(515 3m) U (536 U (5]

2These values were included in [3], but we include a proof for completeness.

1
8

—_

} 1)
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is 4-good and Aé4) = 216. In the following we can assume k > 5. We divide the
proof into three cases.

2k71

Case 1. Assume there is no integral power of 3 between and 2%, In this case,

AR = 3k=1 A = gk—13k—1 5nd 31-1 < 2k—1 < 2k < 3! Let

w11 1
G (3]€ 172k]U(2/€7—1’1]

For W <zr< ﬁgk,l, and any r > 4, we have

4k71 4k71

W>7>1. (2)

k—1 k—1
r* e >4 > 3"

Note the last inequality follows since k£ > 5. When r = 3, we have zik < 3h—ly <
%%1, so 3Fly ¢ G(Qk). Finally, for r = 2, note that after dividing through (2) by
2k=1 we find that Qk_lx > Qk . Thus, there must exist an integer m < k — 1 such
that k < 2Mx < k + and so 2"x & G(k)

Thus (grgie=r “W
with respect to G2 . Using again that 3!~ < 2F < 3!,

]UG( ) is k- good. Now we prove that xy = dek - is k-bad

1 2k 1 ) wet 1
3k71:2k3k71<2k3k7171:3x0<3m0<'”<3 .’I,‘Q—ka
and then
1 o1 3k—1 3l—1
2k71 $0<<3 $02W2?<1
Thus,

{3iwg:i=1,2- k—1} CGP.

That is, zg is k-bad with respect to Gék). To sum up, in Case 1, we have shown
that AV = 23k~

For the remainder of the proof we can assume there is an integer [ with
3! < 2%, Thus, A(k) 2k3k=1=1 and A(k) 2k=13k=l For the remainder we set

k) 1 1 1
G (2k3k — 1’2k}U(2k71’1]'

We first prove the following lemma which will be used throughout to handle the
ratio r = 3.

2k—1 ~

Lemma 1. Suppose that k > 3 and there exists an integer | with 2F~1 < 30 < 2F,
Then for every x in the interval ﬁ <z < W = ﬁ, there exists an

integer 1 <n < k—1 such that either 0 < 3"x < (k) or (k) <3z < (k)

(
5
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Proof. For a fixed value of x, let n; be the smallest integer such that ﬁ =

2k+3k—l < 3™z, and no the smallest integer such that @ = 2% < 3™z. By
h—lp > 2%, we have 0 < n; < ng < k—1. Suppose that 3"z ¢ <A(1k)’ A(lk)} Then
3 2
1 1 -1
3n2f£>2k7_1>2723n2 x.
Multiplying through by zi— gives
1
10 —k+1 no—k+Il—1
3m2 x > W Z 3" xX.

So n1 = ny —k+1. On the other hand, multiplying through the same inequality by

1 .
FR=r=T glves

1 1
— > 3n27k+l — 3n1 .
AW T gR3ET = z z

y 1 1
Thub, 3Mx e (Aék), Aflk):| . L]

We now return to the proof of Theorem 1.1.

Case 2. Assume there is a positive integer [ such that 2°~! < 3! < 2% and there is
no integral power of 4 between 4 - 3*~!=1 and 2 - 3¥~.

We consider the interval M%l < x < 2k+3k—l If » > 4, we have rh=1lg >
4k=1g > 1. If r = 3 we apply Lemma 1. Since - > 525 it implies that

1 1 1 1
've | —,—= —,
<Ag'f> A |V <Agk> e
For the remaining ratio r = 2, note that 2*~'z > %%1, so there exists some integer

0 < h <k —1 such that 2% < 2hg < 2,},1. Thus the set

w _ (1 1 (k)
G3 T (4k1’ 2k13kl:| UG2

for some 1 <n<k-—1.

is k-good.
We now suppose further that k is even and we will prove that z¢y = M%l is k-bad
with respect to ng)by showing that for each 1 < i < k—1, the term 4'z¢ = M%,l S

G:(,,k). When i = k — 1 we have 4*~'zq = 1. Since k is even, k = 2j for some integer

jand 457971y = L = & = Aglm € ng). Clearly there is no power of 4 strictly
between 2F and 2¢~1, so it suffices to show that none of the terms 4%z fall in the
gap between ﬁ and ﬁ, i.e., there is no ¢ with

1 1 1

2k713k7l < 4k7i71 < 2k3k7l71' (3)
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If there were such an 4, multiplying through (3) by 2872 = 47=1 we get

1 1 < 1
2,3k—l < 4k—z‘—j — 223k—l—17

which contradicts the assumption that there is no integral power of 4 between
4.3k=1=1 and 2- 3%~ Thus, when k is even we have Aék) = 4k1,1.

We now consider odd k. The argument above for even k implies that Gék) is

still k-good and we will show, in this case, that the larger set (2_4%, M%l] U ng)
is also k-good. For 2_4% <z < 4’%17 if » > 5, then

1 5
k=lp s ph—l, < = (2)k=1 5 1.
P > x 5 (4)

If » = 4, using that k is odd and noting that 2% <45z < %%1, we know that
455y ¢ G(Qk). When r = 3, Lemma 1 again shows there exists 1 <n < k — 1 with
3"z & (55h=t, 77 UG(Qk). Finally, for r = 2, we have 5 < 271z < L+, and so
we know that 21z ¢ Gék). Thus (37=1, s=t37=7) Ung) is k-good.

To finish this case we show that xg = 2_4% is k-bad with respect to this set

by showing that 4z is contained in it for each 1 < ¢ < k—1. When i = k—1 we

have 4¥ 1z = % > ﬁ. Since k is odd, k = 25 + 1 for some integer j. Now
gh=imlgy = S = & = @ and there is no power of 4 strictly between 2* and
2k=1 50 it remains to show that there is no i with

1 1 1
2k—13k—1 < 2. gk—i-1 < 2kgk—I-1"

If there were, multiplying through this time by 2¥=2 = 2. 471 gives

1 1 1
2,3k—l < 4k—z‘—j S 223k—l—17

contradicting the assumption there is no integral power of 4 between 4 - 3*~!=1 and
2 - 3k=L. To sum up, in Case 2, we have shown that

(k) 4k=1 " for even k,
Ag” =9 oo
22k=1 for odd k.

Case 3. Assume that there is a positive integer I such that 2¥=1 < 3! < 2% and a
positive integer m such that

4.3 g <238 (4)

The same argument used in Case 2 already shows that (41%1’ Wl?)k_l] U Gék) is

k-good for even k and that (2_4%, W] U G(Qk) is k-good when k is odd.
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First, we consider even k and the interval W <z < M%l. Note, since
4™ > 4.3k=1=1 that the lower bound %4;671&3#1 >
k>3,

3.4%,1. If » > 5 then, since

5k—1 8. 5k:—1
k—1 k—1
T > 5" T > %4k_m3k_l > 31k > 1.

For the ratio r = 4 we consider 45 ~™z. Using the inequalities in (4) we deduce
that

1 K 1 1
giige <4 TS gy < gEgea (5)
and so ﬁ < 45 mg < ﬁ. Also, note that 1 < % —-—m < gf 1, so 45-m =
4

5
2k—=2m ~ 9k=1 thus this observation handles the case of 7 = 2 as well. Finally, the
ratio r = 3 can again be handled using Lemma 1, noting that

1 2 1
%4k—m3k—l > 3. 4k-1 > 3k—19k "

k) .
Thus, (%4k*71"3k*l7 Qk_ll?’,c_l} UGé ) is k-good.
We now show xg = W is k-bad with respect to (%4,€,,1,L3k,l , Qk,llgk,l U ng).
We have

1 E_m _ 1 1 E_m41 _ 4 1
%4k7m3k7l4 = gpigi and %4k7m3k7l42 = 9h—igk—l ~ Skgh—i-1

Furthermore, using (4) we find that

1 451 _ 4m 1 1
14k-mgh—1 = Qkrighl < ok 1qk-mgh—1

4m 1

k
42 = Sh—1gk—1 = Dk—1°

1 k-1 _ _4™ oAl 1 1 (k)
and %4;%7”3;%14 = 53— < L. That is, 4'x¢ € (%Aﬂf*m,‘:’)k*l’ 2;%13;671} UG5~ for

1 <i< k-1, so zg is k-bad with respect to that set. So Aék) = %4’“*’"3’“*[.

Now consider odd k. For 2.4% <zx< W, by the same discussion as in the

odd-k part of Case 2, we know that x is k-good with respect to ng), so we take
W<JJS24% IfrZS,then

1
k—1 k—1 k—1
For r = 2,4, it follows from (4) that
4%—771 _ 2k—2m+1 > 1 2k—2m+1 _ 1
= gy —— - = Qk—13k—1
L m . _ ok—2m+1 1 k—2m+1 1
472 mx =2 m x S mz m < W
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Thus,
gh=2mily _ 4 *5—my ¢ ( %k) ’ %k) '
A7 A
For the remaining ratio, » = 3, we appeal one last time to Lemma 1. Since

4k,,,}3k,l > 3,4}%1 > 3k,112k we are guaranteed the existence of ann, 1 <n <k -1

Thus, (4,6,,7}3,9,“ 2;«7113;971] Ung) is k-good. We conclude by proving that zo =

W is k-bad with respect to (4k,,,}3k,l, 2k—113k—l:| U Gék) for odd k. It follows
from (4) that

1 2k72m+1 _ 1 1 2k72m+2 _ 2 > 1
Qk—m3gk—1 T 9k—13k—1"  gk-—m3k—l T 9k—13k—1 okgk—1-1
and

1 k-1 4m 1
4k—m3k—l2 = Shrigh=l < 9k

This means that 2z, € (4k771}3k71 ) 2k7113k71:| UGék) for each 1 < i < k—1, so xg is
k-bad with respect to that set. To sum up, in Case 3, we have shown that

A0 s4k=m3h=l for even k > 4,
6 gr—mgzk=l  for odd k.

This completes the proof of Theorem 1. O
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