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Abstract

For k ≥ 3, we call a set G ⊆ (0, 1] of real numbers k-good if G contains no ge-
ometric progression of length k with integer ratio r > 1. A real number x ∈
(0, 1]\G is called k-bad with respect to G if G

⋃
{x} contains the k-term progression

(x, xr, xr2, · · · , xrk−1) for some integer r > 1. Define Bad(G) = {x ∈ (0, 1] \ G :
x is k-bad with respect to G}. In 2015, Nathanson and O’Bryant showed there

exists a unique sequence of integers {1 = A
(k)
1 < A

(k)
2 < · · · } such that G(k) =⋃∞

i=1(1/A
(k)
2i , 1/A

(k)
2i−1] is a k-good set and Bad(G(k)) =

⋃∞
i=1(1/A

(k)
2i+1, 1/A

(k)
2i ]. The

values of A
(k)
i for 2 ≤ i ≤ 5 have previously been found by Nathanson, O’Bryant

and the second author. In this note, we obtain the value of A
(k)
6 and pose a related

problem.

1. Introduction

For an integer k ≥ 3, we call a set G ⊆ (0, 1] of real numbers k-good if G contains

no geometric progression of length k with integer ratio r > 1. A real number

x ∈ (0, 1]\G is called k-bad with respect to G if there exists an integer r > 1 such that

G
⋃
{x} contains the k-term geometric progression (x, xr, xr2, · · · , xrk−1). Define

Bad(G) = {x ∈ (0, 1] \G : x is k-bad with respect to G}.
1Corresponding author.
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In 2015, Nathanson and O’Bryant [3] proved the following theorem.

Theorem A ([3]). Fix k ≥ 3. There exists a unique strictly increasing sequence of

positive integers {A(k)
1 < A

(k)
2 < · · · } with A

(k)
1 = 1 such that

G(k) =

∞⋃
i=1

( 1

A
(k)
2i

,
1

A
(k)
2i−1

]
is a k-good set and

Bad(G(k)) =

∞⋃
i=1

( 1

A
(k)
2i+1

,
1

A
(k)
2i

]
.

Nathanson and O’Bryant also proved in [3] that A
(k)
2 = 2k−1, A

(k)
3 = 2k and

A
(k)
4 =

{
2k3k−l−1 if there is a positive integer l such that 2k−1 < 3l < 2k,

3k−1 otherwise.

Afterwards, the second author determined the value of A
(k)
5 .

Theorem B ([1]). Let k ≥ 3 be an integer.

(i) If there is no integral power of 3 between 2k−1 and 2k, then

A
(k)
5 = 2k−13i0+1, where i0 is the largest integer i such that 3i < 3k−1/2k.

(ii) If there is a positive integer l such that 2k−1 < 3l < 2k, then k ≥ 4 and

A
(k)
5 =

{
200 if k = 4,

2k−13k−l if k ≥ 5.

For the remainder of the paper we use the variable l for the least integer such that

3l > 2k−1. This convention allows for a simpler statement of the above theorem.

The reader can check that case (i) above simplifies to the second case, and we get

the following, valid for all k ≥ 3:

A
(k)
5 =

{
200 if k = 4,

2k−13k−l = 3k−1
(

2k−1

3l−1

)
otherwise.

Note that the value 1

A
(k)
4

is the upper limit of an interval of values that are bad

with respect to the set
(

1/A
(k)
4 , 1/A

(k)
3

]⋃(
1/A

(k)
2 , 1

]
(write this set as G

(k)
2 ) because

of progressions with ratio r = 3. The ratio
(

2k−1

3l−1

)
is the ratio between 1

3l−1 and

1
2k−1 , the largest value that is excluded from G

(k)
2 . When x = 1

2k−13k−l = 1/A
(k)
5 ,

the term 3k−lx = 1
2k−1 , and so the entire progression with ratio 3 starting at x is

no longer contained in Gk
2 .

In this note, we obtain the value of A
(k)
6 .
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Theorem 1. Let k ≥ 3 be an integer.

(i) If there is no integral power of 3 between 2k−1 and 2k, then

A
(k)
6 = 2k3k−l, where l is the smallest integer such that 3l > 2k.

(ii) If there is a positive integer l such that 2k−1 < 3l < 2k and there is no integral

power of 4 between 4 · 3k−l−1 and 2 · 3k−l, then

A
(k)
6 =

{
4k−1 for even k,

22k−1 for odd k.

(iii) If there is a positive integer l such that 2k−1 < 3l < 2k and there is a positive

integer m such that 4 · 3k−l−1 < 4m < 2 · 3k−l, then A
(4)
6 = 216 and

A
(k)
6 =

{
1
24k−m3k−l for even k > 4,

4k−m3k−l for odd k.

Based on the above results, we pose the following problem.

Problem. For each positive integer i, do there exist infinitely many positive integers

k such that A
(k)
2i = (i + 1)k−1?

One may refer to [2], [4] and [5] for related results.

2. Proof of Theorem 1

We first prove2 that A
(3)
6 = 24 and A

(4)
6 = 216. For k = 3, we know that A

(k)
2 = 4,

A
(k)
3 = 8, A

(k)
4 = 9 and A

(k)
5 = 12. For x ∈ ( 1

16 ,
1
12 ], we have 1

8 < 2x < 1
4 ,

1
8 < 3x ≤ 1

4 and r2x > 1 for r ≥ 4. So the set
(

1
16 ,

1
12

]⋃ (
1
9 ,

1
8

]⋃ (
1
4 , 1
]

is 3-good.

Furthermore, for x ∈ ( 1
24 ,

1
16 ], we have 1

8 < 22x = 4x ≤ 1
4 , 1

8 < 3x < 1
4 and r2x > 1

for r ≥ 5, and so the set (
1

24
,

1

12

]⋃(
1

9
,

1

8

]⋃(
1

4
, 1

]
(1)

is also 3-good. However, for x0 = 1
24 , we have 3x0 = 1

8 and 1
4 < 32x0 < 1. Thus x0

is 3-bad with respect to the set (1), and so A
(3)
6 = 24.

For k = 4, we know A
(k)
2 = 8, A

(k)
3 = 16, A

(k)
4 = 48 and A

(k)
5 = 200. For x ∈

( 1
216 ,

1
200 ], we have that 1

200 < 3x < 22x = 4x ≤ 1
48 , while 1

16 < 52x ≤ 1
8 and r3x > 1

for r ≥ 6. When x0 = 1
216 , we have 1

48 < 6x0 < 1
16 and 1

8 < 62x0 < 63x0 = 1. Thus,(
1

216
,

1

200

]⋃(
1

48
,

1

16

]⋃(
1

8
, 1

]
2These values were included in [3], but we include a proof for completeness.
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is 4-good and A
(4)
6 = 216. In the following we can assume k ≥ 5. We divide the

proof into three cases.

Case 1. Assume there is no integral power of 3 between 2k−1 and 2k. In this case,

A
(k)
4 = 3k−1, A

(k)
5 = 2k−13k−l and 3l−1 < 2k−1 < 2k < 3l. Let

G
(k)
2 = (

1

3k−1
,

1

2k
]
⋃

(
1

2k−1
, 1].

For 1
2k3k−l < x ≤ 1

2k−13k−l , and any r ≥ 4, we have

rk−1x ≥ 4k−1x >
4k−1

2k3k−l
>

4k−1

3k
> 1. (2)

Note the last inequality follows since k ≥ 5. When r = 3, we have 1
2k

< 3k−lx ≤
1

2k−1 , so 3k−lx 6∈ G
(k)
2 . Finally, for r = 2, note that after dividing through (2) by

2k−1 we find that 2k−1x > 1
2k−1 . Thus, there must exist an integer m ≤ k − 1 such

that 1
2k

< 2mx ≤ 1
2k−1 and so 2mx 6∈ G

(k)
2 .

Thus ( 1
2k3k−l ,

1
2k−13k−l ]

⋃
G

(k)
2 is k-good. Now we prove that x0 = 1

2k3k−l is k-bad

with respect to G
(k)
2 . Using again that 3l−1 < 2k < 3l,

1

3k−1
=

2k

2k3k−1
<

1

2k3k−l−1
= 3x0 < 32x0 < · · · < 3k−lx0 =

1

2k

and then

1

2k−1
< 3k−l+1x0 < · · · < 3k−1x0 =

3k−1

2k3k−l
=

3l−1

2k
< 1.

Thus,

{3ix0 : i = 1, 2, · · · , k − 1} ⊆ G
(k)
2 .

That is, x0 is k-bad with respect to G
(k)
2 . To sum up, in Case 1, we have shown

that A
(k)
6 = 2k3k−l.

For the remainder of the proof we can assume there is an integer l with 2k−1 <

3l < 2k. Thus, A
(k)
4 = 2k3k−l−1 and A

(k)
5 = 2k−13k−l. For the remainder we set

G
(k)
2 = (

1

2k3k−l−1
,

1

2k
]
⋃

(
1

2k−1
, 1].

We first prove the following lemma which will be used throughout to handle the

ratio r = 3.

Lemma 1. Suppose that k ≥ 3 and there exists an integer l with 2k−1 < 3l < 2k.

Then for every x in the interval 1
3k−12k

< x ≤ 1
2k−13k−l = 1

A
(k)
5

, there exists an

integer 1 ≤ n ≤ k − 1 such that either 1

A
(k)
5

< 3nx ≤ 1

A
(k)
4

or 1

A
(k)
3

< 3nx ≤ 1

A
(k)
2

.



INTEGERS: 22 (2022) 5

Proof. For a fixed value of x, let n1 be the smallest integer such that 1

A
(k)
5

=

1
2k−13k−l < 3n1x, and n2 the smallest integer such that 1

A
(k)
3

= 1
2k

< 3n2x. By

3k−1x > 1
2k

, we have 0 < n1 ≤ n2 ≤ k−1. Suppose that 3n2x 6∈
(

1

A
(k)
3

, 1

A
(k)
2

]
. Then

3n2x >
1

2k−1
>

1

2k
≥ 3n2−1x.

Multiplying through by 1
3k−l gives

3n2−k+lx >
1

2k−13k−l
≥ 3n2−k+l−1x.

So n1 = n2− k+ l. On the other hand, multiplying through the same inequality by
1

3k−l−1 gives
1

A
(k)
4

=
1

2k3k−l−1
≥ 3n2−k+lx = 3n1x.

Thus, 3n1x ∈
(

1

A
(k)
5

, 1

A
(k)
4

]
.

We now return to the proof of Theorem 1.1.

Case 2. Assume there is a positive integer l such that 2k−1 < 3l < 2k and there is

no integral power of 4 between 4 · 3k−l−1 and 2 · 3k−l.
We consider the interval 1

4k−1 < x ≤ 1
2k−13k−l . If r ≥ 4, we have rk−1x ≥

4k−1x > 1. If r = 3 we apply Lemma 1. Since 1
4k−1 > 1

3k−12k
it implies that

3nx ∈

(
1

A
(k)
5

,
1

A
(k)
4

]⋃(
1

A
(k)
3

,
1

A
(k)
2

]
for some 1 ≤ n ≤ k − 1.

For the remaining ratio r = 2, note that 2k−1x > 1
2k−1 , so there exists some integer

0 < h < k − 1 such that 1
2k

< 2hx ≤ 1
2k−1 . Thus the set

G
(k)
3 :=

(
1

4k−1
,

1

2k−13k−l

]⋃
G

(k)
2

is k-good.

We now suppose further that k is even and we will prove that x0 = 1
4k−1 is k-bad

with respect to G
(k)
3 by showing that for each 1 ≤ i ≤ k−1, the term 4ix0 = 1

4k−i−1 ∈
G

(k)
3 . When i = k− 1 we have 4k−1x0 = 1. Since k is even, k = 2j for some integer

j and 4k−j−1x0 = 1
4j = 1

2k
= 1

A
(k)
3

∈ G
(k)
3 . Clearly there is no power of 4 strictly

between 2k and 2k−1, so it suffices to show that none of the terms 4ix0 fall in the

gap between 1

A
(k)
5

and 1

A
(k)
4

, i.e., there is no i with

1

2k−13k−l
<

1

4k−i−1
≤ 1

2k3k−l−1
. (3)
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If there were such an i, multiplying through (3) by 2k−2 = 4j−1 we get

1

2 · 3k−l
<

1

4k−i−j
≤ 1

223k−l−1
,

which contradicts the assumption that there is no integral power of 4 between

4 · 3k−l−1 and 2 · 3k−l. Thus, when k is even we have A
(k)
6 = 1

4k−1 .

We now consider odd k. The argument above for even k implies that G
(k)
3 is

still k-good and we will show, in this case, that the larger set ( 1
2·4k−1 ,

1
4k−1 ]

⋃
G

(k)
3

is also k-good. For 1
2·4k−1 < x ≤ 1

4k−1 , if r ≥ 5, then

rk−1x ≥ 5k−1x >
1

2
· (5

4
)k−1 > 1.

If r = 4, using that k is odd and noting that 1
2k

< 4
k−1
2 x ≤ 1

2k−1 , we know that

4
k−1
2 x 6∈ G

(k)
2 . When r = 3, Lemma 1 again shows there exists 1 ≤ n ≤ k − 1 with

3nx 6∈ ( 1
2·4k−1 ,

1
4k−1 ]

⋃
G

(k)
2 . Finally, for r = 2, we have 1

2k
< 2k−1x ≤ 1

2k−1 , and so

we know that 2k−1x 6∈ G
(k)
2 . Thus

(
1

2·4k−1 ,
1

2k−13k−l

]⋃
G

(k)
2 is k-good.

To finish this case we show that x0 = 1
2·4k−1 is k-bad with respect to this set

by showing that 4ix0 is contained in it for each 1 ≤ i ≤ k−1. When i = k−1 we

have 4k−1x0 = 1
2 > 1

A
(k)
2

. Since k is odd, k = 2j + 1 for some integer j. Now

4k−j−1x0 = 1
2·4j = 1

2k
= 1

A
(k)
3

and there is no power of 4 strictly between 2k and

2k−1, so it remains to show that there is no i with

1

2k−13k−l
<

1

2 · 4k−i−1
≤ 1

2k3k−l−1
.

If there were, multiplying through this time by 2k−2 = 2 · 4j−1 gives

1

2 · 3k−l
<

1

4k−i−j
≤ 1

223k−l−1
,

contradicting the assumption there is no integral power of 4 between 4 · 3k−l−1 and

2 · 3k−l. To sum up, in Case 2, we have shown that

A
(k)
6 =

{
4k−1 for even k,

22k−1 for odd k.

Case 3. Assume that there is a positive integer l such that 2k−1 < 3l < 2k and a

positive integer m such that

4 · 3k−l−1 < 4m < 2 · 3k−l. (4)

The same argument used in Case 2 already shows that
(

1
4k−1 ,

1
2k−13k−l

]⋃
G

(k)
2 is

k-good for even k and that
(

1
2·4k−1 ,

1
2k−13k−l

]⋃
G

(k)
2 is k-good when k is odd.
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First, we consider even k and the interval 1
1
2 4

k−m3k−l < x ≤ 1
4k−1 . Note, since

4m > 4 · 3k−l−1, that the lower bound 1
1
2 4

k−m3k−l > 2
3·4k−1 . If r ≥ 5 then, since

k ≥ 3,

rk−1x ≥ 5k−1x >
5k−1

1
24k−m3k−l

>
8 · 5k−1

3 · 4k
> 1.

For the ratio r = 4 we consider 4
k
2−mx. Using the inequalities in (4) we deduce

that

1

2k−13k−l
< 4

k
2−mx ≤ 1

2k4m−1
<

1

2k3k−l−1
(5)

and so 1

A
(k)
5

< 4
k
2−mx < 1

A
(k)
4

. Also, note that 1 ≤ k
2 − m < k

2 − 1, so 4
k
2−m =

2k−2m < 2k−1, thus this observation handles the case of r = 2 as well. Finally, the

ratio r = 3 can again be handled using Lemma 1, noting that

1
1
24k−m3k−l

>
2

3 · 4k−1
>

1

3k−12k
.

Thus,
(

1
1
2 4

k−m3k−l ,
1

2k−13k−l

]⋃
G

(k)
2 is k-good.

We now show x0 = 1
1
2 4

k−m3k−l is k-bad with respect to
(

1
1
2 4

k−m3k−l ,
1

2k−13k−l

]⋃
G

(k)
2 .

We have

1
1
24k−m3k−l

4
k
2−m =

1

2k−13k−l
and

1
1
24k−m3k−l

4
k
2−m+1 =

4

2k−13k−l
>

1

2k3k−l−1
.

Furthermore, using (4) we find that

1
1
24k−m3k−l

4
k
2−1 =

4m

2k+13k−l
<

1

2k
,

1
1
24k−m3k−l

4
k
2 =

4m

2k−13k−l
>

1

2k−1
,

and 1
1
2 4

k−m3k−l 4k−1 = 4m

2·3k−l < 1. That is, 4ix0 ∈
(

1
1
2 4

k−m3k−l ,
1

2k−13k−l

]⋃
G

(k)
2 for

1 ≤ i ≤ k−1, so x0 is k-bad with respect to that set. So A
(k)
6 = 1

24k−m3k−l.

Now consider odd k. For 1
2·4k−1 < x ≤ 1

2k−13k−l , by the same discussion as in the

odd-k part of Case 2, we know that x is k-good with respect to G
(k)
2 , so we take

1
4k−m3k−l < x ≤ 1

2·4k−1 . If r ≥ 5, then

rk−1x ≥ 5k−1x > 5k−1
1

4k−m3k−l
> 1.

For r = 2, 4, it follows from (4) that

4
k+1
2 −mx = 2k−2m+1x >

1

4k−m3k−l
2k−2m+1 =

1

2k−13k−l

4
k+1
2 −mx = 2k−2m+1x ≤ 1

2 · 4k−1
2k−2m+1 <

1

2k3k−l−1
.
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Thus,

2k−2m+1x = 4
k+1
2 −mx ∈

(
1

A
(k)
5

,
1

A
(k)
4

]
.

For the remaining ratio, r = 3, we appeal one last time to Lemma 1. Since
1

4k−m3k−l > 1
3·4k−1 > 1

3k−12k
we are guaranteed the existence of an n, 1 ≤ n ≤ k− 1

with 3nx 6∈ ( 1
4k−m3k−l ,

1
4k−1 ]

⋃
G

(k)
2 .

Thus,
(

1
4k−m3k−l ,

1
2k−13k−l

]⋃
G

(k)
2 is k-good. We conclude by proving that x0 =

1
4k−m3k−l is k-bad with respect to

(
1

4k−m3k−l ,
1

2k−13k−l

]⋃
G

(k)
2 for odd k. It follows

from (4) that

1

4k−m3k−l
2k−2m+1 =

1

2k−13k−l
,

1

4k−m3k−l
2k−2m+2 =

2

2k−13k−l
>

1

2k3k−l−1

and

1

4k−m3k−l
2k−1 =

4m

2k+13k−l
<

1

2k
.

This means that 2ix0 ∈
(

1
4k−m3k−l ,

1
2k−13k−l

]⋃
G

(k)
2 for each 1 ≤ i ≤ k−1, so x0 is

k-bad with respect to that set. To sum up, in Case 3, we have shown that

A
(k)
6 =

{
1
24k−m3k−l for even k > 4,

4k−m3k−l for odd k.

This completes the proof of Theorem 1. 2
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