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Abstract. Let Sdiv(n) denote the set of permutations π of n such that for each
1 ≤ j ≤ n either j | π(j) or π(j) | j. These permutations can also be viewed as
vertex-disjoint directed cycle covers of the divisor graph D[1,n] on vertices v1, . . . , vn
with an edge between vi and vj if i | j or j | i. We improve on recent results of

Pomerance by showing cd = limn→∞ (#Sdiv(n))
1/n

exists and that 2.069 < cd <
2.694. We also obtain similar results for the set Slcm(n) of permutations where
lcm(j, π(j)) ≤ n for all j. The results rely on a graph theoretic result bounding
the number of vertex-disjoint directed cycle covers, which may be of independent
interest.

1. Introduction

Several recent papers have investigated permutations π of the integers [1, n] =
{1, 2, . . . n} where the value π(i) is related to the index i in an arithmetically inter-
esting way.

In [9] Pomerance introduces the coprime permutations (permutations satisfying
the condition gcd(i, π(i)) = 1 for all 1 ≤ i ≤ n). He shows, for large n, that the
count of such permutations is bounded between n!/cn1 and n!/cn2 with c1 = 3.73
and c2 = 2.5. That paper also includes a conjecture made by the author of this

paper that the count of co-prime permutations of n, as n → ∞, is n!/c
n+o(n)
o where

co =
∏

p
p(p−2)1−2/p

(p−1)2−2/p = 2.65044 . . . . This conjecture was proven a few days later in a

paper by Sah and Sawhney [12].
Coprime permutations are a special case of coprime mappings, bijective maps

f : A → B between two sets of integers with the property that gcd(a, f(a)) = 1
for every a ∈ A. Coprime mappings have been considered by many authors. Newman
conjectured that there always exists a coprime mapping from [1, n] to any set of n
consecutive integers. This was proven by Pomerance and Selfridge [11]. The special
case of coprime mappings from [1, n] to [n + 1, 2n] was proved in [3] (see also [2, 5]).
More recently, coprime mappings have been shown to be related to the lonely runner
conjecture [1, 8].

The same paper [9] that introduced the coprime permutations suggested other in-
teresting arithmetic constraints that could be imposed on permutations. One example
is the set Sdiv(n) of permutations π of n where, for each index i, either i | π(i) or
π(i) | i; another is the set Slcm(n) of permutations where lcm(i, π(i)) ≤ n for all i.
(Notice that Sdiv(n) ⊆ Slcm(n).) A table with exact values of the counts of #Sdiv(n)
and #Slcm(n) up to n = 50 is provided in Table 2 in the Appendix, along with the
corresponding values of the n-th roots of these counts.
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Pomerance revisits these two sets of permutations in [10]. In each case he shows
that the count of these permutations grows geometrically. In particular, for large n,

1.9364n ≤ #Sdiv(n) < #Slcm(n) ≤ 13.5597n.

A heuristic argument is given that #Slcm(n) ≤ 8.3830n, though data suggests even this
bound is substantially greater than the truth. He also gives the bounds #Slcm(n) ≥
2.1335n and shows that #Slcm(n)/#Sdiv(n) > 1.00057n, both valid for large n.

In this paper, we show there exist constants cd and cl with #Sdiv(n) = c
n+o(n)
d

and #Slcm(n) = c
n+o(n)
l as n goes to infinity. The method immediately gives the

improved upper bounds cd < 3.31369 and cl ≤ 6.60740 without significant additional
computation, but also gives an algorithm that can compute the constants to arbitrary
precision, which we use to improve these upper bounds further in Section 6. Further
ideas, discussed in Section 7, combined with the methods of [10] allow us to similarly
improve the lower bounds, resulting in the bounds

2.06912 < cd < 2.69390 and 2.30136 < cl < 3.36352.

The key idea is a graph-theoretic result, bounding the ratio by which the count
of the vertex-disjoint directed cycle covers of a graph can increase when a vertex is
added, depending on the degree of that vertex. This result may also be of independent
interest. A related question is posed in Section 8.

2. Notation and statement of results

It will be convenient to consider the permutations π in Sdiv(n) as vertex-disjoint
directed cycle covers of the divisor graph D[1,n] consisting of vertices v1, v2, . . . vn, and
an edge between vi and vj if i | j or j | i. Every vertex in the graph is treated as
having a self-loop. In the context of this graph, permutations in Sdiv(n) are in bijection
with vertex-disjoint directed cycle covers of D[1,n]. (The permutation π ∈ Sdiv(n) is
associated with the cycle cover containing all directed edges of the form i → π(i).)

To account for fixed points and transpositions in the permutation, we allow cycles
of any positive length in our cycle covers. In particular, cycles of length 1 (a single
vertex involving only a loop of D[1,n]) and 2 (two vertices connected by an edge, in
which case that edge is used two times) are allowed. In more generality, we write D[k,n]

for the divisor graph consisting of integers from the interval [k, n], and Sdiv([k, n]) for
the permutations restricted to that interval.

In the same way, we let L[k,n] be the graph consisting of integers from the interval
[k, n] with an edge between vertices vi and vj if lcm(i, j) ≤ n, and Slcm([k, n]) is the set
of permutations subject to the same restriction. Then again we can view permutations
in Slcm(n) as vertex-disjoint directed cycle covers of L[1,n].

For an arbitrary graph G, let C(G) denote the number of vertex-disjoint directed
cycle covers of the graph G. We will be interested in understanding how the count
G(G) grows as new vertices are added to the graph. For a graph G and a vertex v of
G we define

R(G, v) :=
C(G)

C(G− {v})
to be the ratio of the number of vertex-disjoint directed cycle covers of G, divided
by the number of such covers in the graph where the vertex v has been removed (or
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alternatively cycle covers of G in which we insist that the vertex v be part of a cycle
of length 1).

Intuitively, one would expect the ratio R(G, v) to be larger for well connected
vertices with high degree and smaller when the vertex v has small degree. It isn’t
obvious, however, that the ratio R(G, v) would be bounded for all graphs G and
vertices v having a fixed degree d = d(v). This somewhat surprising result is given by
the following theorem.

Theorem 2.1. Let G be a graph with a self-loop on every vertex and v a vertex of G
of degree d = d(v), counting the self-loop once. Then

R(G, v) ≤ 1 +
d2 − d

2
.

This theorem will be the main ingredient used to obtain a more precise estimate
for #Sdiv(n) and #Slcm(n).

Theorem 2.2. There exists an effectively computable constant cd = lim
n→∞

(#Sdiv(n))
1/n

and, for ϵ > 0, we have

#Sdiv(n) = c
n(1+O(exp((−1+ϵ)

√
logn log logn))

d .

We obtain an identical result for #Slcm(n).

Theorem 2.3. There exists an effectively computable constant cl = lim
n→∞

(#Slcm(n))
1/n

and, for ϵ > 0, we have

#Slcm(n) = c
n(1+O(exp((−1+ϵ)

√
logn log logn))

l .

3. Improved upper bounds

Before proving these results, we can get a preview of how Theorem 2.1 will be used
by applying it to get improved upper bounds for #Sdiv(n) and #Slcm(n). We start
by writing #Sdiv(n) as a telescoping product. This gives1

#Sdiv(n) =
n∏

a=1

#Sdiv([a, n])

#Sdiv([a+ 1, n])
=

n∏
a=1

C(D[a,n])

C(D[a+1,n]))

=
n∏

a=1

R(D[a,n], va) ≤
n∏

a=1

(
1 +

d(va)
2 − d(va)

2

)
using the bound from Theorem 2.1. Noting that the vertex va is connected to each
of the

⌊
n
a

⌋
multiples of a less than n (including itself) in D[a,n] and subsequently

1Since the interval [n+ 1, n] is the empty set, we set #Sdiv([n+ 1, n]) = C(D[n+1,n]) = 1.
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grouping together vertices with the same degree we get

#Sdiv(n) ≤
n∏

a=1

(
1 +

d(va)
2 − d(va)

2

)
=

n∏
a=1

(
1 +

⌊
n
a

⌋2 − ⌊n
a

⌋
2

)

= exp

(
n∑

a=1

log

(
1 +

⌊
n
a

⌋2 − ⌊n
a

⌋
2

))

= exp

(
n∑

k=1

(⌊
n

k

⌋
−
⌊

n

k+1

⌋)
log

(
1 +

k2 − k

2

))
.

Finally, taking n-th roots and letting n → ∞ we get that

lim
n→∞

(#Sdiv(n))
1/n ≤ lim

n→∞
exp

(
1

n

n∑
k=1

(⌊
n

k

⌋
−
⌊

n

k + 1

⌋)
log

(
1 +

k2 − k

2

))

= lim
n→∞

exp

 n∑
k=1

 log
(
1 + k2−k

2

)
k(k + 1)

+O

(
log n√

n

)
= exp

 ∞∑
k=1

log
(
1 + k2−k

2

)
k(k + 1)

 < exp(1.19806) < 3.31369.

Note that when we remove the floor signs in the second line above, there are
√
n

values of k ≤
√
n, which each contribute O (log n) to the sum, and the difference(⌊

n
k

⌋
−
⌊

n
k+1

⌋)
is 0 for all but at most

√
n values of k >

√
n, which again each

contribute O(log n). This is how the error term in that line is obtained.
The numerical bound was obtained by evaluating the sum exactly for 1 ≤ k ≤ 107

and then numerically bounding the contribution from the tail k > 107. We obtain
further improved bounds below in Section 6.

Computing improved upper bounds for #Slcm(n) follows similarly, however there
is some additional complexity, as the degree of va in L[a,n] is not so simply described
as in D[a,n].

Proposition 3.1. The degree of va in the graph L[a,n] is

d(va) =
∑

1≤j≤n
a

∑
1≤ℓ≤j

gcd(j,ℓ)=1
ℓ|a

1.

Proof. The vertex va is connected to vb in L[a,n] if a ≤ b ≤ n and there are integers
j, ℓ with lcm(a, b) = ja = ℓb ≤ n. In this case we must have j ≤ n

a
, ℓ ≤ j (since

a ≤ b), gcd(j, ℓ) = 1, and so ℓ | a. Having chosen values of a and j satisfying these
conditions, b = ja

ℓ
is uniquely determined and has lcm(a, b) ≤ n. Thus summing over

all possible pairs ℓ and j gives the result. □

Since ∑
1≤ℓ≤j

gcd(j,ℓ)=1
ℓ|a

1 ≤
∑
1≤ℓ≤j

gcd(j,ℓ)=1

1 = φ(j),
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we set Φk =
∑k

j=1 φ(j), and the proposition implies that the degree of va in L[a,n]

satisfies d(va) ≤ Φ⌊n
a⌋. Following the same logic as for #Sdiv(n), we get

#Slcm(n) ≤
n∏

a=1

1 +
Φ2

⌊n
a⌋

− Φ⌊n
a⌋

2


= exp

(
n∑

k=1

(⌊
n

k

⌋
−
⌊

n

k+1

⌋)
log

(
1 +

Φ2
k − Φk

2

))
.

So, taking n-th roots and letting n → ∞ gives

lim
n→∞

(#Slcm(n))
1/n ≤ exp

 ∞∑
k=1

log
(
1 +

Φ2
k−Φk

2

)
k(k + 1)

 (1)

< exp(1.88819) < 6.60740.

Again, the final bound was obtained by evaluating the sum exactly for 1 ≤ k ≤ 107

and numerically bounding the contribution from the tail k > 107. We improve this
bound further by handling the degrees of the vertices more carefully (and utilizing
further numerical computations) in Section 6.

4. Graph Theory

In this section, we prove Theorem 2.1, the bound for the ratio R(G, v) of the number
of vertex-disjoint directed cycle covers of G including v to those with v removed (or
fixed). The result is true for graphs in general, not just those obtained as divisor or
lcm-graphs.

Suppose that v is a vertex of G of degree d (counting the loop on v.) Our goal is
to show that

R(G, v) =
C(G)

C(G \ {v})
≤ 1 +

d2 − d

2
.

Let W = {w1, w2, . . . , wd−1} be the set of vertices adjacent to v in G, not including
v itself. Write C(G), the total number of vertex-disjoint directed cycle covers of G, as

C(G) = Cv +
d−1∑
i=1

Cvwi
+
∑

1≤i,j<d
i ̸=j

Cwivwj

where Cv = C(G \ {v}) is the number of vertex-disjoint directed cycle covers of G in
which v is part of a cycle of length 1, Cvwi

is the count of those cycle covers in which v
is part of a cycle of length 2 along with its neighbor wi, and Cwivwj

counts those where
v is part of a cycle of length greater than 2 and contains the edges wi → v → wj.
The cycles counted by Cvwi

are in bijection with the of vertex-disjoint directed
cycle covers of G in which both v and wi are fixed (each part of cycles of length 1).
Furthermore, the number of such cycles is less than Cv, the number of cycle covers
where only v is required to be fixed, so Cvwi

≤ Cv.
In Lemma 4.1 below we consider Cwivwj

and show, using an argument suggested

by Petrov on Mathoverflow [7], that
(
Cwivwj

)2 ≤ 1
4
(Cv)

2, and thus Cwivwj
≤ Cv

2
.
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Inserting these inequalities Cvwi
≤ Cv and Cwivwj

≤ Cv

2
into the definition of

R(G, v), we find that

R(G, v) =
1

Cv

Cv +
d−1∑
i=1

Cvwi
+
∑

1≤i,j<d
i ̸=j

Cwivwj


≤ 1 + (d− 1) + (d− 1)(d− 2)

1

2
= 1 +

d2 − d

2

as desired.
It remains to demonstrate the bound mentioned above, comparing Cwivwj

to Cv.

Lemma 4.1. Fix distinct neighbors wi and wj of v in G and let Cv and Cwivwj
be

defined as above. Then (
Cwivwj

)2 ≤ 1

4
(Cv)

2 .

Proof. We first break up the count Cv, depending on whether or not each of the
vertices wi and wj are fixed (a cycle of length 1) or part of a larger cycle. We write

Cv = X + Yi + Yj + Z

where X counts the contribution from the cases where v, wi, and wj are all part of
1-cycles, Yi (respectively Yj) counts those where only v and wi (wj) are fixed, and Z
counts those where v is fixed but neither wi nor wj is fixed. We can then write

(Cv)
2 = (X + Yi + Yj + Z)2 ≥ (X + Z)2 + (Yi + Yj)

2 ≥ 4(XZ + YiYj)

by the AM-GM inequality. So it remains to show that XZ + YiYj ≥ (Cwivwj
)2. We

prove this by creating an injection from pairs of cycle-covers counted by the latter to
those counted by the former.

Each of the products XZ, YiYj and (Cwivwj
)2 count pairs of vertex-disjoint directed

cycle covers. We color the one contributed by the first entry in the product blue, and
the one from the second red. Drawing them together on the same graph results in a
colored, directed multigraph in which every vertex has both an inward pointing blue
and red edge, and a blue and a red edge directed away from it. Note that edges of G
may be used multiple times. When this construction is done for a pair of coverings
counted by (Cwivwj

)2, the result will contain both red and blue edges wi → v → wj.
We can now take this collection of red-and-blue-colored, directed edges and, instead

of viewing it as two monochromatic vertex-disjoint directed cycle covers, we partition
it into alternating-color directed cycles. There is a unique way to do this: at each
vertex there is precisely one inward directed edge of each color and one outward
directed edge of each color, so the cycles are found by alternately following blue
and red edges. Every vertex is visited exactly twice by the resulting collection of
alternating-color directed cycles. (A vertex may appear twice on the same cycle, or
on two different cycles.)

The injection from objects counted by (Cwivwj
)2 to those counted by XZ + YiYj

now proceeds as follows: Remove all four edges incident either to or from v. Then add
two loops to v, one of each color. The result is a graph in which every vertex except
for wi and wj has an inward and outward oriented edge of each color, while wi has
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two inward pointing edges of each color, and wj has two outward pointing edges of
each color. This graph can thus be decomposed into alternating-color directed cycles,
as well as two alternating-color directed paths from wj to wi. Let P be the path that
ends in a blue edge at wi.

Now add a loop to each of the vertices wi and wj. While we can’t initially assign
these loops colors consistent with the coloring of the remainder of the edges (as each
vertex is adjacent to precisely one blue and one red edge) we color the new loop on
wi blue. We then recolor every edge in the path P and reverse their directions, so
that now the coloring and orientation of edges at wi (and every intermediate vertex
along P ) is consistent. Since we have flipped the color and direction of one of the two
edges adjacent to wj, both edges now have the same color and opposite orientations.
We can thus color the new loop at wj the opposite color, resulting in a consistent
coloring at that vertex as well.

The result is a new collection of alternating-color directed cycles of G, with v having
two self-loops, and wi and wj each having a single loop. We can now separate this
collection of edges back into two monochromatic vertex-disjoint directed cycle covers.
We end up with two cases, based on whether the loops added to wi and wj are the
same color or not. If they are both blue, then the red coloring fixes only v and neither
wi nor wj, so this pair is counted byXZ. On the other hand, if the loops have opposite
colors, then the resulting coloring is counted by YiYj.
Every step of this construction is reversible, so it is easily checked that this is an

inversion, completing the proof. (It is not a surjection—if the collection of alternating-
color directed cycles produced from a pair of colorings counted by XZ or YiYj does
not result in both of the loops on wi and wj being part of the same alternating-color
directed cycle, then that pair is not in the image of this map.) □

5. Asymptotic results for #Sdiv(n) and #Slcm(n)

In [6], while investigating several counting problems related to the divisibility of in-
tegers in the interval [1, n], the author proved a general result about functions f(b,m)
which depend only on the connected component of vb in the divisor graph of the inter-
val [b, n]. We say that a function f : N2 → R has this property if f(b,m) = f(b′,m′)
whenever the connected component of vb in D[b,m] is isomorphic to the connected
component of vb′ in D[b′,m′], with an isomorphism that maps vb to vb′ . For functions
with that property, [6] proves the following theorem:

Theorem 5.1 (Main Theorem of [6]). Suppose ϵ > 0, A ≥ 0 and f(a, n) is a bounded
function |f(a, n)| ≤ A that depends only on the connected component of va in D[a,n].
Then there exists a constant

Cf =
∞∑
i=1

∑
1≤d

P+(d)≤i

∑
t∈[id,(i+1)d)

(
f(d, t)

t(t+ 1)

∏
p≤i

p− 1

p

)
(2)

such that
n∑

a=1

f(a, n) = nCf +Oϵ

(
An exp

(
−(1− ϵ)

√
log n log log n

))
. (3)
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Here P+(d) denotes the largest prime divisor of d. The same result applies when
divisor graphs are replaced by lcm graphs.

Letting f(a, n) = log
(

#Sdiv([a,n])
#Sdiv([a+1,n])

)
, it is easy to see that the function f depends

only on the connected component of va in the divisor graph. However, it does not sat-
isfy the requirement that |f(k, n)| ≤ A be bounded. For example, even in the case of
f(1, k), adding v1 to the divisibility graph D[2,k] connects all of the previously uncon-
nected vertices vp for prime integers k/2 < p ≤ k. Since they were previously uncon-
nected, they were fixed by every permutation in Sdiv([2, k]). In Sdiv([1, k]) the integer 1
can be permuted with any of these primes, so we find that f(1, k) > log(π(k)−π(k/2)),
which goes to infinity with k. (Here π(k) is the prime counting function.)

On the other hand, we can use Theorem 2.1 to show that even though f(a, n) is
not bounded, it cannot go to infinity very quickly as a function of the ratio n

a
. In

particular, we have

f(a, n) ≤ log

(
1 +

(
n
a

)2 − n
a

2

)
= O

(
log

n

a

)
.

In the expression for Cf and throughout the proof of Theorem 5.1 in [6], the variable
i corresponds to this ratio i =

⌊
a
n

⌋
. If we inspect that proof carefully, replacing each

instance that the bound f(a, n) ≤ A is used with the bound f(a, n) = O (log i)
instead, we find that the result is unchanged. (In the course of the proof the A that
appears in each of the error terms ends up being replaced by a factor of O(logN),
where N is a parameter in the proof describing where the sum over i is truncated.
This factor of logN does not affect the optimization of the error terms, it remains
optimal to take logN =

√
log n log log n. This additional factor can be absorbed into

the existing final error term.) As a result, we can update the theorem to the form
stated in Theorem 5.2 below.

Furthermore, it is straightforward to check that the proof in [6] applies equally well
to the graphs L[a,n]. The key observation is that for any integers a and n, the set of
vertices in the connected component of va in D[a,n] is identical to the set of vertices in
the connected component of va in L[a,n], since if two vertices vi and vj are connected
by an edge in L[a,n], they are both connected to the vertex vlcm(i,j) in D[a,n]. Combining
these observations we obtain the following updated theorem.

Theorem 5.2. Suppose ϵ > 0, f(a, n) depends only on the connected component of
va in D[a,n] (respectively L[a,n]) and f(a, n) = O

(
log n

a

)
. Then, there exists a constant

given by (2) such that the approximation (3) holds.

Theorems 2.2 and 2.3 now follow as corollaries. We take

f(a, n) = log

(
#Sdiv([a, n])

#Sdiv([a+ 1, n])

)
= log

(
R(D[a,n], va)

)
(replacing D[a,n] with L[a,n] in the case of #Slcm(n)), noting that the function depends
only on the connected component of va in of the divisor graph D[a,n] (or L[a,n]),
and use Theorem 2.1 (as well as Proposition 3.1 in the case of Slcm(n)) to see that
f(a, n) = O

(
log a

n

)
so that our updated theorem applies. Finally, as in Section 3, we
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write #Sdiv(n) as a telescoping product to get

#Sdiv(n) =
n∏

a=1

#Sdiv([a, n])

#Sdiv([a+ 1, n])
= exp

(
n∑

a=1

f(a, n)

)
,

or a similar statement for #Slcm(n), and the theorems follow from the estimate above.

6. Numerical Upper Bounds

The expressions given for the constants of Theorems 2.2 and 2.3 provide a method
of computing the values of the constants to any precision by computing exactly suf-
ficiently many terms and estimating the contribution for the remainder of the series.
In practice, however, this is not such an easy task, as the values of f(d, t) quickly
become difficult to compute. Computing the number of vertex-disjoint directed cycle
covers C(G) of a graph G is equivalent to computing the permanent of the adja-
cency matrix of the graph, and computing matrix permanents is well known to be a
computationally difficult problem

Nevertheless, computing exact values of f(d, t) is tractable so long as the number
of vertices in the corresponding graphs is not too large.

In order to improve the bound cd < 3.31369 obtained in Section 3, we compute
the exact value of f(d, t) for the divisor graph for all i, d with id < 50000 and all
t ∈ [id, (i + 1)d) for which the connected component of vd in D[d,t] had at most 50
vertices. For all of the uncomputed values of f(d, t) we use the same bound f(d, t) ≤
log
(
1 + i2−i

2

)
, where i =

⌊
t
d

⌋
as before. Doing so gives the improved upper bound

cd < 2.69390.

6.1. Improved bounds for #SLCM(n). There is more room for improvement in the
upper bound cl < 6.60740 obtained in (1). Before resorting to numerical calculation
of the exact values of f(d, t), as above, we can first get a significant improvement by
more carefully dealing with the precise degree of vertices rather than using the crude
bound d(va) ≤ Φ⌊n

a⌋ as we did in Section 3.

In particular, Proposition 3.1 tells us that the degree of va in D[a,n] depends on both

i =
⌊
n
a

⌋
, and the set of integers {ℓ < i : ℓ | a}. This set is completely characterized by

the integer d′ = gcd(a,Mi), where Mi := lcm([1, i]) is the least common multiple of
the first i integers. Any integer a in the interval

(
n

i+1
, n
i

]
having gcd(a,Mi) = d′ will

have the same degree, which we denote Ti,d′ . Namely, from Propositon 3.1,

Ti,d′ := d(va) =
∑
1≤j≤i

∑
1≤ℓ≤j

gcd(j,ℓ)=1
ℓ|d′

1.

For a fixed d′ | Mi, the proportion of integers a having d′ = gcd(a,Mi) is
φ(Mi

d )
Mi

. Thus
we can improve the upper bound 1 to

lim
n→∞

(#Slcm(n))
1/n ≤ exp

 ∞∑
i=1

∑
d′|Mi

(
φ
(
Mi

d

)
i(i+1)Mi

log

(
1 +

T 2
i,d′ − Ti,d′

2

)) .

We first numerically compute the value of this sum for 1 ≤ i ≤ 10000. Computing
the inner sum over d′ | Mi quickly becomes unwieldy as i gets large, however. So
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for i ≥ 42 we only compute it over the restricted range d′ ≤ 10000. For all of the
uncomputed values we use the same bound Ti,d′ ≤ Φi as before. We similarly use this
bound for 10000 < i ≤ 107, and numerically estimate the tail i > 107, giving the
bound cl ≤ 4.25724.
Finally, we can numerically compute exact values of f(d, t), as we did in the divisor

graph case above. Doing so for pairs (i, d) with id < 50000 and all t ∈ [id, (i + 1)d)
for which the connected component of vd in L[d,t] had at most 44 vertices2 gives the
improved bound cl ≤ 3.36352.
To compute matrix permanents, a parallel algorithm [4], optimized for sparse binary

matrices, was used. The code provided by the author of that paper was modified to
use exact large integer arithmetic instead of floating point arithmetic.

7. Numerical Lower Bounds

As mentioned above, Theorems 2.2 and 2.3 give a method to compute lower bounds
for cd and cl by explicitly computing partial sums of the series given for each constant,
but the convergence is quite slow. Using the same range of values used to obtain
the upper bounds in the previous section (all pairs (i, d) with id < 50000 and all
t ∈ [id, (i + 1)d) for which the connected component of vd in D[d,t] had at most 50
vertices (or in the case of cl, the connected component of L[d,t] had at most 44 vertices)
gives lower bounds 1.70584 < cd, and 1.81576 < cl, both substantially worse than the
bounds 1.9364 < cd and 2.1335 < cl obtained by Pomerance in [10].

Pomerance obtains his bounds as follows. For an integer b, write the divisors ai | b,
as 1 = a1 < a2 < · · · ak = b, where k = τ(b). Write Sdiv ({a1, a2 . . . ai}) for the permu-
tations of the set {a1, a2 . . . ai} satisfying the usual divisibility requirements. (Simi-
larly for Slcm({a1, a2 . . . ai}) in which case we impose the condition lcm(aj, π(aj)) ≤ ai,
where ai is the largest element in the set.) Then define

βdiv(b) :=
log(#Sdiv({a1, a2, . . . , ak})

b
+

k−1∑
i=1

(
1

ai
− 1

ai+1

)
log(#Sdiv({a1, a2, . . . , ai})

and

βlcm(b) :=
log(#Slcm({a1, a2, . . . , ak})

b
+

k−1∑
i=1

(
1

ai
− 1

ai+1

)
log(#Slcm({a1, a2, . . . , ai}).

Note that #Slcm({a1, a2, . . . , ak}) = k!, since lcm(ai, aj) ≤ ak = b for all i, j. Finally,
define α(pi) on prime powers by

α(pi) =
pi+1 − pi

pi+1 − 1

and extend α to a multiplicative function on the positive integers. With this definition,
α(b) gives the density of the integers j satisfying the condition vp(j) ≡ 0 (mod vp(b)+
1) for every prime p. Pomerance then shows that for any integer b (as n → ∞) both

#Sdiv(n) ≥ exp (βdiv(b)α(b)n+ o(n)) (4)

2Computing matrix permanents was slower in this case because the matrices were more dense,
which necessitated a smaller maximum matrix size.
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and

#Slcm(n) ≥ exp (βlcm(b)α(b)n+ o(n)) . (5)

b βdiv(b)α(b) eβdiv(b)α(b) βlcm(b)α(b) eβlcm(b)α(b)

24 0.542689 1.720627 0.602065 1.825886
48 0.578121 1.782686 0.638299 1.893259
60 0.646855 1.909527 0.646855 1.909527
72 0.598295 1.819015 0.670619 1.955447
120 0.610358 1.841091 0.707611 2.029138
144 0.631752 1.880903 0.704928 2.023701
180 0.710735 2.035488 0.710735 2.035488
240 0.642829 1.901853 0.740126 2.096201
288 0.650370 1.916251 0.723606 2.061856
360 0.660646 1.936043 0.769250 2.158148
432 0.654328 1.923851 0.730695 2.076524
480 0.660864 1.936465 0.757764 2.133502
576 0.660597 1.935949 0.733726 2.082827
720 0.691601 1.996910 0.800104 2.225772
864 0.672306 1.958749 0.748644 2.114132
1440 0.708710 2.031369 0.816672 2.262957
1728 0.682146 1.978118 0.758293 2.134630
2160 0.711797 2.037650 0.822675 2.276582
3456 0.687472 1.988683 0.763452 2.145671
5184 0.690644 1.995001 0.767521 2.154419
10368 0.695844 2.005402 0.772521 2.165219

Table 1. Values of βdiv(b)α(b) and βlcm(b)α(b) computed for 3- and
5-smooth values of b.

The bounds above are obtained by taking b = 480. We can first improve the bounds
by extending the computations to larger values of b as given in Table 1. By using the
values obtained for b = 2160 = 24 × 33 × 5, we can improve the lower bounds to
2.037650 < cd and 2.276582 < cl.

We can further improve these bounds by combining these ideas (for small primes)
with exact computations for the large primes. An inspection of the proof in [10]
shows that (4) and (5) are in fact lower bounds for “smooth” versions of #Sdiv(n)
and #Slcm(n) in the following sense.

Let Sdiv(n, s) ⊆ Sdiv(n) be the set of permutations π of n such that for each i,
either i | π(i), or π(i) | i and, furthermore, the quotient is s-smooth (meaning that

P+
(

i
π(i))

)
≤ s or P+

(
π(i)
i

)
≤ s, whichever is an integer). In the same way, let

Slcm(n, s) ⊆ Slcm(n) be the permutations of n where for each i, lcm(i, π(i)) ≤ n and

also P+
(

lcm(i,π(i))
gcd(i,π(i))

)
≤ s. Then we have

#Sdiv(n, P
+(b)) ≥ exp (βdiv(b)α(b)n+ o(n)) (6)

and

#Slcm(n, P
+(b)) ≥ exp (βlcm(b)α(b)n+ o(n)) .

We can then improve the lower bounds for #Sdiv(n) and #Slcm(n) by obtaining

lower bounds for each of the ratios #Sdiv(n)
#Sdiv(n,s)

and #Slcm(n)
#Slcm(n,s)

. This can be done through
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explicit computation, similar to the methods introduced in previous sections. Fix a
smoothness bound s and let Rs ⊂ [1, n] be the set of s-rough integers up to n, those
integers free of prime factors less than or equal to s. Then, for an integer r ∈ Rs let
Mr,n,s = {i ≤ n : r | i and P+( i

r
) ≤ s} be the set of s-smooth multiples of r up to n.

Note that we can then write

#Sdiv(n, s) =
∏
r∈Rs

#Sdiv(Mr,n,s)

since permutations in Sdiv(n, s) only permute integers within the sets Mr,n,s.
In a similar way, if A1, A2, . . . Ak are any disjoint subsets of [1, n], then

#Sdiv(n) ≥
k∏

i=1

#Sdiv(Ai).

Combining these two observations, if D1, D2, . . . , Dk are any disjoint sets that par-
tition Rs then

#Sdiv(n)

#Sdiv(n, s)
=

#Sdiv(n)∏k
i=1

∏
r∈Di

#Sdiv(Mr,n,s)
≥

k∏
i=1

#Sdiv

(⋃
r∈Di

Mr,n,s

)∏
r∈Di

#Sdiv(Mr,n,s)
(7)

since each of the sets Mr,n,s are disjoint and partition the interval [1, n]. Furthermore,
each of the terms in the rightmost product above are greater than or equal to 1 since
the permutations enumerated by the denominator are a subset of those counted by the
numerator. So, multiplying over a set of disjoint Di which don’t necessarily partition
Rs, we still obtain a lower bound for the ratio.

We now use the following strategy to pick sets Di. Consider DRs the restriction of
the divisor graph to the set Rs. For an integer a ∈ Rs, take Da,n to be the integers
in the connected component of va in DRs∩[a,n] (further restricting to integers greater
than or equal to a). Now we take As to be the set of integers a ∈ Rs satisfying:

• |
⋃

r∈Da,n
Mr,n,s| ≤ 50

• If i =
⌊
n
a

⌋
and d is the largest i-smooth divisor of a, then id < 50000.

• Da,n is disjoint from any Db,n with b < a that satisfies the first two properties.

We note that in this setup with i =
⌊
n
a

⌋
, d the largest i-smooth divisor of a

and t =
⌊
nd
a

⌋
, the set

⋃
r∈Da,n

Mr,n,s has the same exact multiplicative structure as⋃
r∈Dd,t

Mr,t,s. So, using the same techniques as previous sections, we can compute

lim
n→∞

(∏
a∈AS

#Sdiv

(⋃
r∈Da

Mr,n,s

)∏
r∈Dd,t

#Sdiv(Mr,n,s)

)1/n

=
∏
i,d,t

1≤d≤ 50000
i

d∈Rs, P+(d)≤i
t∈[id,(i+1)d)∣∣∣∣∣
⋃

r∈Dd,t
Mr,t,s

∣∣∣∣∣≤50

#Sdiv

( ⋃
r∈Dd,t

Mr,t,s
)

∏
r∈Dd,t

#Sdiv(Mr,t,s)

/#Sdiv

( ⋃
r∈Dd,t

r>d

Mr,t,s
)

∏
r∈Dd,t

r>d

#Sdiv(Mr,t,s)


1

t(t+1)

∏
p≤i

p−1
p

. (8)
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Setting s = 3 we can evaluate the expression above exactly and find that it evaluates
to 0.031282. . . . Using this value in (7), along with the bound for #Sdiv(n, 3) obtained
using b = 10368 (see Table 1) we compute that

cd ≥ exp(0.695844 + 0.031282) = 2.06912.

We can also evaluate the expression in (8) when s = 5, in which case we obtain the
value 0.00905. . . . However using this, along with the value of βdiv(b)α(b) for b = 2160,
the largest 5-smooth b-value we were able to compute, does not result in a better lower
bound for cd.
Following the same strategy for #Slcm(n), we take Lb to be the integers in the

connected component of vb in LRs∩[b,n], and Bs the set of integers b ∈ Rs satisfying
analogous conditions as As, but with the size restricted to 44 instead of 50 in the first
condition. We then compute

lim
n→∞

(∏
a∈B3

#Slcm

(⋃
d∈La

Md,n,s

)∏
d∈La

#Slcm(Md,n,s)

)1/n

= 0.040298 . . . ,

lim
n→∞

(∏
a∈B5

#Slcm

(⋃
d∈La

Md,n,s

)∏
d∈La

#Slcm(Md,n,s)

)1/n

= 0.010828 . . . .

Comparing these to the values in Table 1, we find that this time around the best
lower bound is obtained using s = 5 and b = 2160, in which case we obtain

cl ≥ exp(0.822675 + 0.010828) > 2.30136.

It isn’t clear whether these methods can be used to improve the lower bound
cℓ/cd > 1.00057 obtained in [10].

Question 7.1. Can the lower bound for cℓ/cd be improved?

8. Final remarks on Theorem 2.1

The bound obtained in Theorem 2.1 does not seem to be sharp for any d > 2.
For example, among all graphs G of order at most 10 and vertices v ∈ G of degree
3 (counting the loop on v), the bound R(G, v) ≤ 3 holds (compared to the bound
R(G, v) ≤ 4 given by the theorem). R(G, v) = 3 when G = K3, with loops added
to each vertex. Among graphs of order at most 10 and vertices of degree 4 we have
R(G, v) ≤ 19

4
(compared to 7), achieved when G = K2,3 with loops added to each

vertex (and v being one of the two vertices of degree 4).
The statement of Theorem 2.1 is reminiscent of Bregman’s inequality, which states,

in the notation of this paper, that

C(G) ≤
∏

v∈V (G)

(d(v)!)1/d(v).

This comparison might lead one to conjecture that R(G, v) = O(d(v)), however this
is false: Fixing d > k > 1 and letting v be one of the k vertices of degree d+ 1 in the
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complete bipartite graph Kd,k (with loops added to each vertex), we find that

R(Kd,k, v) =
C(Kd,k)

C(Kd,k−1)
=

∑k
i=0

(
k
i

) d!(k−i)!
(d−k+i)!∑k−1

i=0

(
k−1
i

) d!(k−1−i)!
(d−k+i+1)!

.

Taking k = d
2
, we find that the expression above simplifies to d2

4
+O(d). So the bound

in Theorem 2.1 has the optimal order of growth, though it is not clear what the
optimal constant in such a bound would be.

Question 8.1. What is the best possible constant c in a bound of the form R(G, v) ≤
cd2(1 + o(1)) as d(v) → ∞?

From the example above and Theorem 2.1, we know that the optimal constant is
between 1

4
and 1

2
. It would also be of interest to determine, for fixed degrees d, the

best upper bound of this sort.
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Appendix A. Table of values of #Sdiv(n) and #Slcm(n)

n #Sdiv(n) (#Sdiv(n))
1/n #Slcm(n) (#Slcm(n))1/n

1 1 1.000000 1 1.000000
2 2 1.414214 2 1.414214
3 3 1.442250 3 1.442250
4 8 1.681793 8 1.681793
5 10 1.584893 10 1.584893
6 36 1.817121 56 1.955981
7 41 1.699799 64 1.811447
8 132 1.841076 192 1.929357
9 250 1.846876 332 1.906016

10 700 1.925351 1184 2.029248
11 750 1.825447 1264 1.914155
12 4010 1.996467 12192 2.190313
13 4237 1.901098 12872 2.070745
14 10680 1.939792 37568 2.122134
15 24679 1.962555 100836 2.155631
16 87328 2.036208 311760 2.204772
17 90478 1.956867 322320 2.108710
18 435812 2.057285 2338368 2.258544
19 449586 1.983885 2408848 2.167129
20 1939684 2.062465 14433408 2.280176
21 3853278 2.058785 32058912 2.277331
22 8650900 2.066907 76931008 2.282754
23 8840110 2.004564 78528704 2.204256
24 60035322 2.109115 919469408 2.363092
25 80605209 2.071355 1158792224 2.304413
26 177211024 2.076107 2689828672 2.305057
27 368759752 2.076284 4675217824 2.281082
28 1380348224 2.120451 21679173184 2.339615
29 1401414640 2.067278 21984820864 2.273133
30 8892787136 2.146024 381078324992 2.432393
31 9014369784 2.094725 386159441600 2.364649
32 33923638848 2.133429 1202247415040 2.385063
33 59455553072 2.120756 2207841138624 2.366245
34 126536289568 2.120976 4860086689536 2.361221
35 207587882368 2.105468 8681783534848 2.342473
36 1495526775088 2.178656 112777175188224 2.456628
37 1510769105288 2.133868 113878087417856 2.398302
38 3187980614208 2.133241 247857779387904 2.392185
39 5415462995568 2.120818 437979951107072 2.373679
40 29811240618112 2.171998 3191130554148864 2.441173
41 30071845984896 2.131747 3217753817425920 2.389093
42 167426899579520 2.181034 40769431338324480 2.485903
43 168778036632608 2.142238 41092863780506112 2.434258
44 543720217208896 2.162195 148296367650710016 2.456139
45 1741288345700048 2.181152 512674391975854336 2.474868
46 3618889806595872 2.178863 1089866926717622272 2.466703
47 3643985571635136 2.143371 1097208951955834368 2.420115
48 28167109438114448 2.201420 13688883937198881792 2.504231
49 33158989380172192 2.173477 15603885890357429248 2.464329
50 107833432035711440 2.191064 58892187478016638976 2.485428

Table 2. Values of #Sdiv(n) and #Slcm(n) up to n = 50.
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