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Abstract. We obtain explicit forms of the current best known asymptotic up-
per bounds for gaps between squarefree and cubefree integers. In particular we
show, for any x ≥ 2, that every interval of the form (x, x+11x1/5 log x] contains
a squarefree integer and every interval (x, x + 5x1/7 log x] contains a cubefree
integer. The constants 11 and 5 can be improved further, if x is assumed to be
larger than a very large constant.

1. Introduction

An integer n is called squarefree if it is not divisible by the square of any prime
p. More generally, if k ≥ 2, n is called k-free if it is not divisible by pk for any
prime p. Just as we commonly refer to 2-free integers as squarefree, 3-free integers
are also known as cubefree.

The asymptotic distribution of the k-free integers has been studied systemati-
cally, at least since the early 1900s, with a special focus on the squarefree case. Let
Qk(x) denote the counting function of the k-free numbers up to x, and consider
the error term Ek(x) in the asymptotic formula

Qk(x) =
x

ζ(k)
+ Ek(x),

where ζ(k) is the Riemann zeta-function. The bound Ek(x) = O(x1/k) is classical,
and further improvements are closely related to the distribution of zeros of the
zeta-function. In particular, the best known bound for Ek(x),

Ek(x) = O
(
x1/k exp

(
−c(k)(log x)3/5(log log x)−1/5

))
,

follows from the work of Walfisz on the error term in the Prime Number Theorem
(see [32]). Still, a number of authors [1, 2, 11, 18–20, 22] have obtained sharper
bounds under the assumption that the Riemann Hypothesis is true.

A related problem that has attracted considerable attention concerns the gaps
between consecutive k-free integers. The first result in that direction was obtained
by Fogels [10], who proved that if θ > 2/5 the interval (x, x+xθ] contains a square-
free integer for all sufficiently large x. In 1951, Roth [28] reduced the exponent 2/5
in Fogels’s result to 3/13, while Halberstam and Roth [14] proved that the interval
(x, x+xθ] contains a k-free integer for any θ > 1/(2k) and for all sufficiently large x.
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Around the same time, Erdős [3] proved that there exist infinitely many intervals
(x, x+ h], with

h ≫ log x

log log x
,

which contain no squarefree integers. Together, these results inspired the conjec-
ture that for any fixed ε > 0, the interval (x, x + xε] contains a squarefree integer
for sufficiently large x. This conjecture seems beyond the reach of current meth-
ods, though Granville [13] has shown that, like many other famous theorems and
conjectures in number theory, it follows from the abc-conjecture of Masser and
Oesterlé.

Initially, further improvements on Roth’s result [28] on gaps between squarefree
numbers were obtained through the method of exponential sums [12, 25, 26, 29],
while the (mostly elementary) work of Halberstam and Roth [14] inspired research
on the distribution of k-free numbers in polynomial sequences: see [15, 16, 24] for
some early work and [6, §2] for a more detailed history. Starting in the late 1980s,
Filaseta and Trifonov published a series of papers [4, 5, 7–9, 30, 31], where they
developed an elementary proof [8] that there exists a constant c > 0 such that the
interval (x, x + cx1/5 log x] contains a squarefree integer for all sufficiently large x.
Later, Trifonov [31] generalized this result and proved that, for each k ≥ 3, there
exists a constant c = c(k) > 0 such that the interval (x, x+cx1/(2k+1) log x] contains
a k-free integer for all sufficiently large x. Filaseta and Trifonov [9] generalized
their method to achieve progress in other problems—see the survey article [6] for
the history of such developments, but sharper bounds on the gaps between k-free
integers have remained elusive.

During the past couple of decades, number theorists’ interest in numerically
explicit results has increased significantly, and this has led to the development of
numerically explicit versions of known theorems. As the Filaseta–Trifonov approach
to gaps between k-free integers is both self-contained and “numerically friendly,” it
therefore makes sense to investigate fully explicit versions of the results of [8] and
[31]. In this note, we prove such explicit versions of the gap results for squarefree
and cubefree integers. Our two main theorems are as follows.

Theorem 1. For any x ≥ 2, the interval (x, x+11x1/5 log x] contains a squarefree
integer.

Theorem 2. For any x ≥ 2, the interval (x, x + 5x1/7 log x] contains a cubefree
integer.

The focus of the above theorems is on providing explicit intervals that work for
all x. The price we pay for this universality are the somewhat elevated values of the
constants 11 and 5 in the theorems. If one is interested in reducing those constants
further and willing to accept a result that holds only for sufficiently large x, then
one may prefer the versions given in the next two theorems.
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Theorem 3. Every interval
• (x, x+ 5x1/5 log x] contains a squarefree number for x ≥ e400;
• (x, x+ 2x1/5 log x] contains a squarefree number for x ≥ e1800;
• (x, x+ x1/5 log x] contains a squarefree number for x ≥ e500 000.

Theorem 4. Every interval
• (x, x+ 2x1/7 log x] contains a cubefree number for x ≥ e550;
• (x, x+ x1/7 log x] contains a cubefree number for x ≥ e2300;
• (x, x+ 1

2
x1/7 log x] contains a cubefree number for x ≥ e75 000.

Mossinghoff, Oliveira e Silva and Trudgian [23] (see also Marmet [21]) inves-
tigated long gaps between squarefree numbers numerically. Their computational
work establishes the size of the longest gaps up to 1018, which are all dramati-
cally smaller than the bounds that we get in this paper. The largest gap that
they find is a string of 18 consecutive non-squarefree numbers, the first of which is
125 781 000 834 058 568. As a result of their work, we can assume x ≥ 1018 > e41

throughout the rest of this paper.
Theorems 3 and 4 already hint that the constants in the two main theorems are

influenced by the “small” values of x. Indeed, we establish Theorems 1 and 2 for
x ≥ e116 and x ≥ e210, respectively. To bridge the gap between those lower bounds
and e41, we prove several propositions giving results with larger exponents, which
are however superior to the results of the theorems for small x. In particular, we
find that the interval (x, x + 5x1/4] always contains a squarefree integer (Proposi-
tion 3) and the interval (x, x + 3.8x1/4] contains a squarefree integer for x ≥ e109

(Proposition 4). In the cubefree case, we show that the interval (x, x + 2x1/5] al-
ways contains a cubefree integer (Proposition 5) and the intervals (x, x + 10x1/6]
and (x, x+8.5x1/6] contain a cubefree integer for x ≥ e95 and x ≥ e191 respectively
(Proposition 6).

It should be clear by now from the above discussion, that the values of the
constants and the varios cutoffs in the theorems (and in Propositions 3–6) are not
exact, but rather “nice” approximations. We say more about this in Section 8.1

Finally, we should point out that the strategies we apply here to deal with square-
free and cubefree integers can be used to get explicit bounds for gaps between k-free
integers for arbitrary k as well. However, since additional work is required to gen-
eralize many of the polynomial identities used, we explore this in a future paper.

Notation. Throughout the paper, for a real number θ, we use ⌊θ⌋ to denote the
greatest integer less than or equal to θ; also, {θ} = θ − ⌊θ⌋. We write |A| for
the size of the set A, and π(x) for the prime counting function. Finally, we use
c1, c2, . . . to denote constants that appear in the proofs. Those constants tend to

1The interested reader can explore these phenomena further using the SageMath code for
the computational part of our work, which is available at https://github.com/agreatnate/
explicit-k-free-integer-bounds

https://github.com/agreatnate/explicit-k-free-integer-bounds
https://github.com/agreatnate/explicit-k-free-integer-bounds
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depend on various parameters introduced throughout our arguments (such as λ, δ
and m); we may indicate such dependencies by labeling our constants as functions
of said parameters—see the constant c2(m) in (3.15), for example.

2. Preliminaries

2.1. Outline of the method. For k ≥ 2, let Nk(x, h) be the number of integers
in (x, x+h] that are not k-free. Clearly, to prove any of our theorems, it suffices to
show that Nk(x, h) < h − 1 for the respective choices of k, x and h. We first sieve
this interval of the squares of very small primes, up to a parameter J to be chosen
later. The number of integers in (x, x + h] divisible by the k-th power of a prime
up to J is at most

h

(
1−

∏
p≤J

(
1− 1

pk

))
+ 2π(J) = h

(
1−

∏
p≤J

(
1− 1

pk

)
+

2π(J)

h

)
=: hσ′

0(h, J).

We then count separately the integers divisible by pk for each prime p > J . We
find that

Nk(x, h) ≤ hσ′
0(h, J) +

∑
p>J

(⌊
x+ h

pk

⌋
−
⌊
x

pk

⌋)
, (2.1)

where the sum on the right is over all primes greater than J . To bound the latter
sum, we study separately the contributions of “small” and “large” primes p. We
introduce a parameter H, which we will later choose as H = mh, with m ≥ 1 of
moderate size, and we use this parameter to split the sum in (2.1) as follows:( ∑

J<p≤H

+
∑
p>H

)(⌊
x+ h

pk

⌋
−
⌊
x

pk

⌋)
=: Σ1 + Σ2. (2.2)

The contribution of the small primes can be bounded easily. We have

Σ1 ≤
∑

J<p≤H

(
h

pk
+ 1

)
≤ h

∑
p>J

1

pk
+ π(H)

< h

(
σ1 −

∑
p≤J

1

pk

)
+ π(H), (2.3)

where σ1, the sum of the reciprocals of all of the primes to the k-th power, satisfies

σ1 <

{
0.4523 when k = 2,

0.1748 when k = 3.
(2.4)

We group the sum over primes up to J appearing in (2.3) with σ′
0(h, J) to write

σ0(h, J) = 1−
∏
p≤J

(
1− 1

pk

)
−
∑
p≤J

1

pk
+

2π(J)

h
, (2.5)
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so that we get
Nk(h, x) ≤ h

(
σ0(h, J) + σ1

)
+ π(H) + Σ2. (2.6)

The term π(H) above can be bounded with the help of the following well known
result of Rosser and Schoenfeld [27, (3.2)].

Lemma 1. For any x > 1, one has

π(x) <
x

log x

(
1 +

1.5

log x

)
. (2.7)

Applying this lemma, we see that

π(H) < σ2(h,m)h, σ2(h,m) :=
m

log(mh)

(
1 +

1.5

log(mh)

)
. (2.8)

The estimation of the sum Σ2 occupies the remainder of the paper. We remark
that primes p > k

√
2x do not contribute to that sum, since for such primes we have

0 <
x

pk
<

x+ h

pk
≤ 2x

pk
< 1.

Moreover, if p > h1/k, we get

0 ≤
⌊
x+ h

pk

⌋
−
⌊
x

pk

⌋
≤ h

pk
+ 1 < 2.

Thus, the finite sum Σ2 counts the primes p ∈ (H, k
√
2x] for which there exists an

integer m with
x

pk
< m ≤ x+ h

pk
.

The latter inequality can be expressed in terms of the fractional part of xp−k: it
says that {xp−k} > 1− hp−k. Therefore,

Σ2 ≤
∣∣Sk(H,

k
√
2x)
∣∣, (2.9)

where

Sk(M,N) :=

{
u ∈ Z : M < u ≤ N, gcd(u, 2) = 1, 1− h

uk
≤
{ x

uk

}
< 1

}
. (2.10)

We remark that while we no longer require the elements of Sk(M,N) to be prime,
we do restrict them to odd values so that the differences between any two elements
of the set are even, a fact which will be useful later.

Thus, in view of (2.6), (2.8) and (2.9), to prove any of our results, it will suffice
to find a choice of H such that∣∣Sk(H,

k
√
2x)
∣∣ ≤ hσ3(h,m), (2.11)

for some bounded function σ3(h,m) such that

σ0(h, J) + σ1 + σ2(h,m) + σ3(h,m) < 1− 1

h
. (2.12)
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In Sections 6–7, we establish inequalities of the form (2.11) and optimize the
choices of several parameters to ensure that the respective versions of (2.12) hold.
We conclude the present section with the statements of a couple of general-purpose
lemmas, which we will use repeatedly in the remainder of the paper to obtain
bounds on the spacing and cardinality of sets Sk(M,N).

2.2. Some general lemmas. Our bounds on |Sk(M,N)| are based on the simple
idea that if the minimum distance between distinct elements of a set of integers A
is at least d, then

|A ∩ (M,N ]| ≤ d−1(N −M) + 1. (2.13)
In Sections 3–5, we prove several results on the spacing between elements of sets

Sk(M) := Sk(M,λM),

where λ > 1 is a constant. Those spacing estimates and inequality (2.13) yield
bounds on |Sk(M)|, which we leverage with the help of the next lemma.

Lemma 2. Suppose that A1, A2, A3, b1, b2 are positive reals and u, v, λ are real
numbers with 0 < u < v < 1 < λ. Assume that for all M ∈ [xu, xv] the estimate

|Sk(M)| ≤ A1M
b1 + A2M

−b2 + A3

holds. Then
|Sk(x

u, xv)| ≤ A′
1x

b1v + A′
2x

−b2u + A′
3 log x+ A3,

where
A′

1 =
A1

1− λ−b1
, A′

2 =
A2

1− λ−b2
, A′

3 = A3 ·
v − u

log λ
.

Proof. This is standard: we cover the interval (xu, xv] with intervals of the form
(M,λM ], apply the hypothesis to each of them, and sum the ensuing geometric
progressions. The only (minimal) novelty in the present version is the explicit
description of the coefficients A′

j in terms of the Aj’s and the various parameters.
The reader will find a detailed proof of a variant for λ = 2 in [5, Lemma 1]. □

Some of our results also rely on the properties of divided differences. For a
function f : [a, b] → R and s + 1 points t0, t1, . . . , ts ∈ [a, b], the divided difference
(of order s), f [t0, t1, . . . , ts], of f at the given points is defined recursively: we set
f [t0] = f(t0) when s = 0, and

f [t0, t1, . . . , ts] =
f [t1, . . . , ts]− f [t0, . . . , ts−1]

ts − t0

when s ≥ 1. Divided differences are a tool in numerical analysis that has a long
and rich history, but here we are interested only in two of their elementary proper-
ties, which we summarize in the next lemma. The reader can find proofs of these
properties in many texts on numerical analysis that discuss interpolation theory:
e.g., [17, Ch. 6].
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Lemma 3. Let f : [a, b] → R be a function, let t0 < t1 < · · · < ts be distinct
numbers in [a, b], and let f [t0, t1, . . . , ts] denote the respective divided difference of
f . Then

f [t0, t1, . . . , ts] =
s∑

j=0

f(tj)∏
i ̸=j

(tj − ti)
,

where the product is over i ∈ {0, 1, . . . , s} \ {j}. Moreover, if f has s continuous
derivatives on [a, b], then there is a number ξ ∈ (t0, ts) such that

f [t0, t1, . . . , ts] =
f (s)(ξ)

s!
.

3. Basic Spacing Lemmas

Let M be a large parameter, with H ≤ M ≤ k
√
2x, and let λ ∈ (1, 2] be a

constant. In this section, we prove several lower bounds on the minimum distance
between distinct elements of Sk(M). As we pointed out in the introduction, the
computational work in [23] allows us to assume that x is large. Also, while in our
proofs we will utilize several different choices for h and H, we will always have
h ≤ H and h ≤ 2x1/3. Thus, we assume in the remainder of the paper that

x ≥ e41, 1000 ≤ h ≤ 2x1/3. (3.1)

3.1. Spacing for pairs. First, we show that two distinct elements of Sk(M) cannot
be “too close” to one another.

Lemma 4. Let k = 2 or 3, and suppose that H ≤ M . If u and u + a are distinct
elements of Sk(M), then

a > 0.999(kx)−1Mk+1. (3.2)

Proof. Consider the function f(u) = xu−k. If u, u+ a ∈ Sk(M), we have
f(u) = n1 − θ1, f(u+ a) = n2 − θ2, (3.3)

with n1, n2 ∈ Z, 0 < θ1, θ2 < hM−k. So,
f(u+ a)− f(u) = n− θ, |θ| < hM−k.

By the mean-value theorem, there exists a number ξ ∈ (u, u+ a) such that

|f(u+ a)− f(u)| = a|f ′(ξ)| = kax

ξk+1
>

kx

(λM)k+1
.

If n = 0, we have |f(u+ a)− f(u)| = |θ| < hM−k, and we deduce that

kλ−k−1x < hM < 3x5/6,

which contradicts (3.1). Thus, we have n ̸= 0, so |n| ≥ 1. We also get that
|θ| < hM−k ≤ hH−k ≤ H1−k ≤ 0.001.



8 A. KUMCHEV, W. MCCORMICK, N. MCNEW, A. PARK, R. SCHERR, AND S. ZIEHR

Hence, |f(u+ a)− f(u)| ≥ 1− |θ| ≥ 0.999, and we obtain
0.999 ≤ |f(u+ a)− f(u)| = kaxξ−k−1 < kaxM−k−1,

from which (3.2) follows. □
Applying (2.13) to the result of the last lemma, we obtain the following bound

on the size of Sk(M).
Corollary 1. Under the hypotheses of Lemma 4, we have

|Sk(M)| ≤ c−1
1,k(λ− 1)xM−k + 1,

where c1,2 = 0.4995 and c1,3 = 0.333.
When k = 3, we can use the above lemma to prove the following alternative

bound, which is stronger than the case k = 3 of (3.2) for M ≤ 1.5x2/7. This is
the first of several results that make use of polynomial identities, similar to (3.5)
below, which are inspired by the theory of Padé approximations. Such identities
play a larger role in our proofs of gap results between cubefree integers than in
the squarefree case. Moreover, they play a central role in our forthcoming work on
gaps between k-free integers for general k.
Lemma 5. Let λ ≤ 1.2, and suppose that 3λ5h ≤ H ≤ M . If u and u + a are
distinct elements of S3(M), then

a > 0.7934x−1/3M5/3. (3.4)
Proof. We recall the algebraic identity

a3(2u+ a)

u3(u+ a)3
=

u+ 2a

(u+ a)3
− u− a

u3
. (3.5)

From this (and defining n1, n2, θ1, θ2 as in (3.3)), we deduce that
a3(2u+ a)x

u3(u+ a)3
= f(u+ a)(u+ 2a)− f(u)(u− a)

= (n2 − θ2)(u+ 2a)− (n1 − θ1)(u− a) = n+ θ, (3.6)
where n ∈ Z and θ = (u−a)θ1−(u+2a)θ2. In particular, using that 0 < θi < hM−3

and u, u+ a ∈ (M, 1.2M ], we get
|θ| ≤ a(2θ1 + θ2) + u|θ1 − θ2| < (u+ 3a)hM−3 ≤ 1.6hM−2. (3.7)

Next, we will prove that n ̸= 0. We have
a3(2u+ a)x

u3(u+ a)3
>

2a3ux

u3(u+ a)3
≥ 2a3x

(λM)5
> 0.666λ−5M−1, (3.8)

on recalling (3.2) and the trivial bound a2 ≥ 1. On the other hand, if n = 0, the
right side of (3.8) equals θ (which must be positive), and (3.7) and (3.8) together
yield

0.666λ−5 < 1.6hM−1 ≤ 1.6hH−1,
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which contradicts the hypothesis on H. Thus, we must have |n| ≥ 1.
Similarly to (3.8), we find that

a3(2u+ a)x

u3(u+ a)3
≤ 2a3(u+ a)x

u3(u+ a)3
=

2a3x

u3(u+ a)2
≤ 2a3x

M5
. (3.9)

On the other hand, the hypotheses of the lemma and (3.1) yield
|θ| < 1.6hH−2 < 10−3,

so
a3(2u+ a)x

u3(u+ a)3
≥ |n| − |θ| > 0.999.

Combining the last inequality with (3.9), we deduce
a3 > 0.4995x−1M5, (3.10)

and the conclusion of the lemma follows. □
We can use this to obtain the following.

Corollary 2. Under the hypotheses of Lemma 5, we have
|S3(M)| < 1.2604(λ− 1)x1/3M−2/3 + 1.

3.2. Spacing for triples. Next, we consider any three distinct elements u, u +
a, u+ b of Sk(M), with 0 < a < b, and obtain lower bounds on b.
Lemma 6. Let λ ≤ 1.2, m ≥ 1.5, and suppose that mh = H ≤ M . If 0 < a < b
and u, u+ a, u+ b are elements of S2(M), then

b ≥ 1.3860x−1/3M4/3. (3.11)
Proof. Suppose first that b ≤ 0.004M . Write u1 = u, u2 = u + a, and u3 = u + b,
and let n1, n2, n3 ∈ Z be such that

f(ui) = ni − θi, 0 < θi < hM−2 (i = 1, 2, 3).

We consider the second divided difference f [u1, u2, u3]. By Lemma 3,

f [u1, u2, u3] =
f(u1)(u3 − u2) + f(u2)(u1 − u3) + f(u3)(u2 − u1)

(u2 − u1)(u3 − u1)(u3 − u2)

=
(n1 − θ1)(b− a)− (n2 − θ2)b+ (n3 − θ3)a

ab(b− a)
=:

n− θ

V
,

where
n = (b− a)n1 − bn2 + an3 and θ = (b− a)θ1 − bθ2 + aθ3.

In particular, since θi > 0, we have
−bhM−2 < −bθ2 < θ < (b− a)θ1 + aθ3 < bhM−2.

Moreover, since u, u + a and u + b are all odd (see (2.10)) we know that a and b
are both even, so n must be as well.
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We will show that n ̸= 0. Suppose that n = 0. Then

|f [u1, u2, u3]| =
|θ|
V

<
bhM−2

ab(b− a)
=

h

a(b− a)M2
<

hx

0.999M5
,

after an appeal to (3.2) and the bound b − a ≥ 2. However, using Lemma 3, we
also get that

|f [u1, u2, u3]| =
|f ′′(ξ)|

2!
=

3x

ξ4
≥ 3x

(λM)4
.

Thus,
3x

(λM)4
<

hx

0.999M5
<

1.002hx

HM4
,

which contradicts the hypotheses of the lemma.
Having proved that n ̸= 0 and using that it is even, we find that |n| ≥ 2. Hence,

|f [u1, u2, u3]| =
|n− θ|

V
≥ 2− |θ|

ab(b− a)
>

1.997

ab(b− a)
, (3.12)

since
|θ| < bhM−2 < 0.004hH−1 ≤ 1

250m
≤ 1

375
.

On the other hand, by Lemma 3,

|f [u1, u2, u3]| =
3x

ξ4
≤ 3x

M4
. (3.13)

From (3.12), (3.13), and the elementary inequality a(b− a) ≤ 1
4
b2, we deduce that

3b3x

4
≥ 3ab(b− a)x > 1.997M4, (3.14)

and the conclusion of the lemma follows in the case b ≤ 0.004M .
Finally, when b > 0.004M , we have

b3 > (0.004M)3 >
8

3
x−1M4,

by the assumptions that M ≤
√
2x and x ≥ e41. □

Note that the expression on the right side of (3.11) is a lower bound for the
minimum distances between successive elements of the set S ′

2(M) containing every
other element of S2(M). Since |S2(M)| ≤ 2|S ′

2(M)|, this observation and (2.13)
yields the following corollary.

Corollary 3. Under the hypotheses of Lemma 6, we have

|S2(M)| ≤ 1.4430(λ− 1)x1/3M−1/3 + 2.
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Lemma 7. Let λ ≤ 1.04, m ≥ 3, and suppose that mh ≤ H ≤ M . If 0 < a < b
and u, u+ a, u+ b are elements of S3(M), then

ab4 ≥ c2(m)x−1M6, (3.15)
where c2(m) = 0.4− 0.05m−1.

Proof. We begin with the identity
a5

u3(u+ a)3
=

6u2 − 3au+ a2

u3
− 6u2 + 15ua+ 10a2

(u+ a)3
. (3.16)

By substitution, this yields also the two companion identities
b5

u3(u+ b)3
=

6u2 − 3bu+ b2

u3
− 6u2 + 15ub+ 10b2

(u+ b)3
; (3.17)

(b− a)5

(u+ a)3(u+ b)3
=

6(u+ a)2 − 3(b− a)(u+ a) + (b− a)2

(u+ a)3

− 6(u+ a)2 + 15(u+ a)(b− a) + 10(b− a)2

(u+ b)3
. (3.18)

In order to cancel out the higher order terms of u, we subtract (3.16) and (3.18)
from (3.17). This gives

(b− a)(a+ b− 3u)

u3
+

b(5a− b+ 3u)

(u+ a)3
+

a(a− 5b− 3u)

(u+ b)3

=
b5

u3(u+ b)3
− a5

u3(u+ a)3
− (b− a)5

(u+ a)3(u+ b)3
.

(3.19)

For u1 = u, u2 = u+ a, and u3 = u+ b, let
f(ui) = ni − θi, 0 < θi < hM−3 (i = 1, 2, 3).

Multiplying both sides of (3.19) by x, we have that
(b− a)(a+ b− 3u)f(u1) + b(5a− b+ 3u)f(u2) + a(a− 5b− 3u)f(u3) =: n− θ,

where
n = (b− a)(a+ b− 3u)n1 + b(5a− b+ 3u)n2 + a(a− 5b− 3u)n3,

(note that n must be even, as a and b are even) and
|θ| = |b(3u− b)(θ2 − θ1) + 5ab(θ2 − θ3) + a(3u− a)(θ1 − θ3)|

< hM−3(3bu+ 3au+ 3ab− (a− b)2) < 3bhM−3(2u+ a)

< 6bhM−3(u+ b) < 6λbhM−2. (3.20)
Next, we show that n ̸= 0. Suppose not. A direct check reveals that

b5

u3(u+ b)3
− a5

u3(u+ a)3
− (b− a)5

(u+ a)3(u+ b)3
=

P (u; a, b)

u3(u+ a)3(u+ b)3
,
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where
P (u) = 5ab(b− a)(b2 − ab+ a2)u3 + 3ab(b4 − a4)u2

+ 3a2b2(b3 − a3)u+ a3b3(b2 − a2)

> 5ab(b− a)(b2 − ab+ a2)u3 ≥ 5a2b2(b− a)u3 > 10a3bu3. (3.21)
In particular, the two sides of (3.19) are positive. When n = 0, this entails that
θ < 0, and

−θ =
P (u; a, b)x

u3(u+ a)3(u+ b)3
>

10a3bu3x

u3(u+ a)3(u+ b)3
≥ 10b(0.4995M5)

(λM)6
,

after appeals to (3.21) and (3.10). Hence, comparing the bound above to (3.20),
4.995λ−6bM−1 < 6λbhM−2 ≤ 6λbh(HM)−1,

or
m =

H

h
<

6λ5

4.995
which contradicts the hypotheses of the lemma. As such, we must have that |n| ≥ 2.

On the other hand, bounding the numerator P (u; a, b) from above, we find that
P (u) ≤ 5ab(b− a)(b2 − ab+ a2)u3 + 3ab5u2 + 3a2b5u+ a3b5

≤ 5ab3(b− a)u3 + 3ab5u2 + 3ab6u+ ab7

< ab4(5u3 + 3bu2 + 3b2u+ b3) < 5ab4(u+ b)3.

Thus,

n− θ =
P (u; a, b)x

u3(u+ a)3(u+ b)3
≤ 5ab4x

u3(u+ a)3
< 5ab4xM−6. (3.22)

Further, recalling that b < (λ− 1)M , we deduce that
|θ| ≤ 6λbhM−2 < 0.25hM−1 ≤ 0.25hH−1. (3.23)

From (3.22) and (3.23), we deduce that

5ab4xM−6 ≥ P (u; a, b)x

u3(u+ a)3(u+ b)3
≥ 2− |θ| > 2− 0.25hH−1,

which implies the conclusion of the lemma. □
Corollary 4. Under the hypotheses of Lemma 7, we have

|S3(M)| ≤ 2(λ− 1)c2(m)−1/5x1/5M−1/5 + 2.

4. Spacing for Pairs of Pairs

In this section, we study a special family of quadruples u, u+ a, u+ b, u+ a+ b
of elements of Sk(M). The special form of the spacing between the four numbers
allows us to obtain bounds on b that are stronger than those for general quadruples
in Sk(M); in the next section, we will average these bounds over b.
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4.1. Pairs in S2(M). In the next lemma, we use the third-order divided difference
of f(u) = xu−2 for the points u, u+ a, u+ b, and u+ a+ b to bound b from below.

Lemma 8. Let λ ≤ 1.05, m ≥ 5, and suppose that mh ≤ H ≤ M . If 0 < a <
2a ≤ b and u, u+ a, u+ b, u+ a+ b are elements of S2(M), then

ab3 ≥ 0.6600x−1M5. (4.1)

Proof. Consider points u1 = u, u2 = u+a, u3 = u+ b, and u4 = u+a+ b in S2(M).
Recall that by the definition of the set S2(M), there exist integers n1, . . . , n4 and
reals θ1, . . . , θ4 such that

f(ui) = ni − θi, 0 < θi < hM−2 (1 ≤ i ≤ 4). (4.2)
We consider the divided difference f [u1, . . . , u4].

Due to the special configuration of the distances between the four points, the
formula in Lemma 3 simplifies to

f [u1, u2, u3, u4] =
f(u4)− f(u1)

ab(a+ b)
− f(u3)− f(u2)

ab(b− a)
=:

n− θ

V
,

where V = ab(a+ b)(b− a) and
n = (b− a)(n4 − n1)− (a+ b)(n3 − n2),

θ = (b− a)(θ4 − θ1)− (a+ b)(θ3 − θ2).

We remark that n is an even integer and |θ| < 2bhM−2.
We will show that n ̸= 0. Suppose that n = 0. Then

|f [u1, . . . , u4]| =
| − θ|
V

≤ 2bhM−2

ab(a+ b)(b− a)
.

Recalling (3.14), we deduce that

|f [u1, . . . , u4]| <
2hM−2

ab(b− a)
≤ 6hx

1.997M6
.

However, Lemma 3 gives

|f [u1, . . . , u4]| =
|f (3)(ξ)|

3!
=

4x

ξ5
≥ 4x

(λM)5
,

for some ξ ∈ (M,λM ]. We combine these upper and lower bounds to get
4x

(λM)5
<

6hx

1.997M6
<

3.005hx

HM5
,

which contradicts the assumptions of the lemma.
Since n is even and nonzero we can now use that |n| ≥ 2 combined with the

observation b2 − a2 ≥ 0.75b2 to obtain

|f [u1, . . . , u4]| =
|n− θ|

V
≥ 2− |θ|

ab(b2 − a2)
≥ 1.98

0.75ab3
, (4.3)
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since
|θ| < 2bhM−2 < 2(λ− 1)hH−1 ≤ 1

10m
≤ 1

50
.

On the other hand, by Lemma 3,

|f [u1, . . . , u4]| =
4x

ξ5
≤ 4x

M5
. (4.4)

The lemma follows from (4.3) and (4.4). □
Our next result is of a somewhat different nature from the spacing lemmas estab-

lished hitherto. In this lemma, instead of proving that the distance b between the
two pairs exceeds some lower bound in terms of x,M , and possibly, a, we establish
a kind of a dichotomy for b: either b ≥ B1 for some lower bound B1, or b ≤ B2,
with B2 significantly smaller than B1.

Lemma 9. Let λ ≤ 1.05, m ≥ 5, and suppose that mh ≤ H ≤ M . If 0 < a <
2a ≤ b and u, u+ a, u+ b, u+ a+ b are elements of S2(M), then exactly one of the
conditions

a3b < λ6hx−1M4, (4.5)
or

a3b > (0.5− λm−1)x−1M5, (4.6)
must hold.

Proof. We start from the algebraic identity
2u+ 3a

(u+ a)2
− 2u− a

u2
=

a3

u2(u+ a)2
.

Since u, u+ a ∈ S2(M), we can use this identity and (4.2) to get that
a3x

u2(u+ a)2
=

(2u+ 3a)x

(u+ a)2
− (2u− a)x

u2
= n′ + θ′ (4.7)

where n′ = (2u− 3a)n2 − (2u− a)n1 is an even integer and
|θ′| = |θ1(2u− a)− θ2(2u+ 3a)| ≤ 2u|θ1 − θ2|+ a(θ1 + 3θ2) < (2u+ 4a)hM−2.

Combining (4.7) with the analogous identity for the pair u + b, u + a + b, we find
that

a3x

u2(u+ a)2
− a3x

(u+ b)2(u+ a+ b)2
= n+ θ, (4.8)

where n ∈ Z is even and
|θ| < (4u+ 2b+ 8a)hM−2 ≤ 4(u+ a+ b)hM−2 ≤ 4λhM−1 ≤ 4λm−1.

Next we observe, by the mean-value theorem, there is a ξ ∈ (u, u+ b) such that
a3x

u2(u+ a)2
− a3x

(u+ b)2(u+ a+ b)2
=

2a3bx(2ξ + a)

ξ3(ξ + a)3
.
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This expression is bounded above by
2a3bx(2ξ + a)

ξ3(ξ + a)3
<

4a3bx

ξ3(ξ + a)2
< 4a3bxM−5, (4.9)

and bounded below by
2a3bx(2ξ + a)

ξ3(ξ + a)3
>

4a3bx

ξ2(ξ + a)3
> 4a3bx(λM)−5. (4.10)

When a3b ≤ (0.5− λm−1)x−1M5, (4.8), (4.9), and the bound on |θ| yield
n− 4λm−1 < n+ θ < 4a3bxM−5 ≤ 2− 4λm−1,

and hence, n < 2. On the other hand, if a3b ≥ λ6hx−1M4, we deduce from (4.8)
and (4.10) that

4λhM−1 < 4a3bx(λM)−5 < n+ θ < n+ 4λhM−1,

so in this case n > 0. Since n is an even integer, it can satisfy only one of the
conditions n > 0 and n < 2; therefore, at least one of (4.5) or (4.6) must hold.
This completes the proof, since under the hyptheses of the lemma, the lower bound
in (4.6) exceeds the upper bound in (4.5) at least by a constant factor. □
4.2. Pairs in S3(M). We consider u, u+a, u+b, u+a+b ∈ S3(M), with 0 < a ≤ b.
We use several algebraic identities to obtain a series of lower bounds on products
of the form aibj.

Lemma 10. Let λ ≤ 1.04, m ≥ 3, and suppose that mh ≤ H ≤ M . If 0 < a ≤ b
and u, u+ a, u+ b, u+ a+ b are elements of S3(M), then

a3b > 0.0999x−1M6. (4.21)
Proof. Note that under the hypotheses of the lemma, we have

a ≤ 1

2
(a+ b) < 0.5(λ− 1)M. (4.22)

Recall that, by (3.6) and (3.7), we have
a3(2u+ a)x

u3(u+ a)3
= n1 + θ1

with n1 ∈ Z and |θ1| < 1.6hM−2. Indeed, using (4.22) we can strengthen this to
|θ1| < 1.06hM−2. Similarly,

a3(2u+ 2b+ a)x

(u+ b)3(u+ a+ b)3
= n2 + θ2

with n2 ∈ Z and |θ2| < 1.06hM−2. Combining these identities, we find that
a3(2u+ a)x

u3(u+ a)3
− a3(2u+ 2b+ a)x

(u+ b)3(u+ a+ b)3
= n+ θ
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with |θ| ≤ |θ1| + |θ2| < 2.12hM−2. Now, we note that when the right side of the
above identity is combined into a single fraction, the numerator can be written as

a3x[4bu3(u+ a)3 + 3abu2(u+ a)3 + 3b(2u+ a)u3(u+ a)2 + other positive terms].

Since
3abu2(u+ a)3 + 3b(2u+ a)u3(u+ a)2 > 6bu3(u+ a)3,

we can use (3.10) to obtain the lower bound

n+ θ ≥ 10a3bu3(u+ a)3x

u3(u+ a)3(u+ b)3(u+ a+ b)3

=
10a3bx

(u+ b)3(u+ a+ b)3
≥ 20a3x

(λM)6
≥ 9.99

λ6M
.

In particular, if n = 0, we see that

9.99λ−6 ≤ Mθ < 2.12hM−1 < 2.12m−1,

which contradicts the hypotheses. Thus, we must have |n| ≥ 1.
We now observe that (note the first equality can be checked using a computer

algebra system)

(2u+ a)(u+ b)3(u+ a+ b)3 − (2u+ 2b+ a)u3(u+ a)3

= 10bu3(u+ a+ b)3 + b(3(a+ b)2 + 7b2 + 9ab)u2(u+ a+ b)2

+ b2(3(a+ b)3 + ab2 + 2a2b− b3)u(u+ a+ b) + ab3(a+ b)3

< 10bu3(u+ a+ b)3 + 10b(a+ b)2u2(u+ a+ b)2

+ 3b2(a+ b)3u(u+ a+ b) + ab3(a+ b)3

< 10bu3(u+ a+ b)3 + b2u2(u+ a+ b)3 + b3u(u+ a+ b)3 + b4(a+ b)3

< b(u+ a+ b)3(10u3 + bu2 + b2u+ b3) < 10b(u+ b)3(u+ a+ b)3.

Thus,

1− |θ| ≤ n+ θ ≤ 10a3bx

u3(u+ a)3
≤ 10a3bxM−6.

Since |θ| ≤ 2.12hH−2 < 0.001, we conclude that

0.999 < 10a3bxM−6,

and the lemma follows. □

Lemma 11. Let λ ≤ 1.04, m ≥ 8, and suppose that mh ≤ H ≤ M . If 0 < a ≤ b
and u, u+ a, u+ b, u+ a+ b are elements of S3(M), then

a3b3 > 0.0664x−1M7. (4.23)
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Proof. First, we observe that if b ≥ 0.01M , Lemma 10 gives
a3b3 ≥ 0.0999b2x−1M6 ≥ 0.000009x−1M8 > 0.07x−1M7,

since M ≥ mh ≥ 8000. Thus, we may assume for the remainder of the proof that
0 < a ≤ b < 0.01M . Let u1 = u, u2 = u + a, u3 = u + b, and u4 = u + a + b, and
recall that by the definition of the set S3(M), there exist integers n1, . . . , n4 and
reals θ1, . . . , θ4 such that

f(ui) = ni − θi, 0 < θi < hM−3 (1 ≤ i ≤ 4). (4.24)
We begin by constructing a rational function of the form

R(u; a, b) =
P1(u; a, b)

u3
+

P2(u; a, b)

(u+ a)3
+

P3(u; a, b)

(u+ b)3
+

P4(u; a, b)

(u+ a+ b)3
, (4.25)

where Pi(u; a, b) are homogeneous quadratic polynomials, which are at most linear
in u. Clearly, any such rational function can be rewritten as

R(u; a, b) =
C(u; a, b)

u3(u+ a)3(u+ b)3(u+ a+ b)3
, (4.26)

for some homogeneous polynomial C(u; a, b) of total degree 11, which has at most
degree 10 in u. We choose the polynomials Pi(u; a, b) as to minimize the degree of
C with respect to u. The identities

u+ 2a

(u+ a)3
− u− a

u3
=

a3(2u+ a)

u3(u+ a)3
,

1

u3
− 1

(u+ a)3
=

a(3u2 + 3ua+ a2)

u3(u+ a)3
,

imply that any choice of the form
P1(u, a, b) = α(−u+ a)− β, P2(u, a, b) = α(u+ 2a) + β,

P3(u, a, b) = P1(u+ b, a, b) + 2β, P4(u, a, b) = P2(u+ b, a, b)− 2β,

where α, β depend only on a, b, reduces the u-degree of C to at most 7. The choice
α = 3b and β = a2 then ensures that the coefficients of u7 and u6 in C(u; a, b) also
cancel out. Thus, we choose

P1(u, a, b) = −3bu+ 3ab− a2, P2(u, a, b) = 3bu+ 6ab+ a2,

P3(u, a, b) = −3bu− 3b2 + 3ab+ a2, P4(u, a, b) = 3bu+ 3b2 + 6ab− a2.

With the above choice, a straightforward (but tedious) direct calculation reveals
that

C(u; a, b) = 6a3b(5b2 − a2)v5 − 15a3b(a+ b)(5b2 − a2)v4 +D(v; a, b), (4.27)
where v = u+ a+ b and D(v; a, b) is a homogeneous polynomial of total degree 11,
which is cubic in v. In particular, the coefficient of v3 in D(v; a, b) is

72a3b5 + 150a4b4 + 52a5b3 − 30a6b2 − 12a7b < 74a3b3(a+ b)2,

on recalling that 0 < a ≤ b. Note that we have also
72a3b5 + 150a4b4 + 52a5b3 − 30a6b2 − 12a7b > 58a3b3(a+ b)2.
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Similarly, the coefficient of v2 is bounded above and below as
−36a3b3(a+b)3 < 3a8b+18a7b2−3a6b3−93a5b4−108a4b5−33a3b6 < −27a3b3(a+b)3;

the coefficient of v is bounded above and below as
6a3b4(a+ b)3 < −3a8b2− 6a7b3+18a6b4+48a5b5+33a4b6+6a3b7 < 14a3b4(a+ b)3;

and the constant (in v) terms are bounded as
−4.25a4b5(a+ b)2 < a8b3 − 6a6b5 − 8a5b6 − 3a4b7 < −3a4b5(a+ b)2.

Moreover, since M < u < v ≤ λM and 0 < a, b < 0.01M , we find that
a4b5(a+ b)2 < 0.01a3b4(a+ b)3v, a3b4(a+ b)3v < 0.01a3b3(a+ b)3v2,

a3b3(a+ b)3v2 < 0.02a3b3(a+ b)2v3.

From these and the earlier bounds on the coefficients of D(v; a, b), we deduce that
0 < D(v; a, b) < 74a3b3(a+ b)2v3. (4.28)

Inserting this upper bound into (4.27) we now have
C(u; a, b) = 6a3b(5b2 − a2)v5 − 15a3b(a+ b)(5b2 − a2)v4 +D(v; a, b)

≤ a3bv3
(
6(5b2 − a2)v2 − 15(a+ b)(5b2 − a2)v + 74b2(a+ b)2

)
.

We expand v = u+ a+ b (and use a+ b < 0.02u) to bound the term in parentheses
above as

6(5b2 − a2)v2 − 15(a+ b)(5b2 − a2)v + 74b2(a+ b)2

= 6(5b2 − a2)u2 − 3(a+ b)(5b2 − a2)u− 9(a+ b)2(5b2 − a2) + 74b2(a+ b)2

≤ 6(5b2 − a2)u2 − 3(a+ b)(5b2 − a2)u+ 38b2(a+ b)2

< 6(5b2 − a2)u2 − 12(a+ b)b2u+ (a+ b)b2u < 30b2u2.

Thus C(u; a, b) < 30a3b3u2v3. We can also use (4.28) to bound C from below:
C(u; a, b) = 3a3b(5b2−a2)v4(2v − 5(a+b)) +D(v; a, b)

> 12a3b3v4(2u− 3(a+b))

> 12a3b3v2
(
u2 + 2(a+ b)u

)
(2u− 3(a+ b))

> 12a3b3uv2
(
2u2 + 0.98(a+ b)u

)
> 24a3b3u3v2.

From these bounds and (4.26), we deduce that

18.238a3b3M−7 <
24a3b3

(λM)7
≤ R(u; a, b) ≤ 30a3b3M−7. (4.29)

On the other hand, multiplying both sides of (4.25) by x, we get from (4.24) that
xR(u; a, b) = n− θ



EXPLICIT GAPS BETWEEN POWERFREE INTEGERS 19

where n ∈ Z is even (since all of the coefficients in each of the Pi are even) and

θ =
4∑

i=1

Pi(u; a, b)θi.

We can bound |θ| as follows:
|θ| ≤ 3bu|θ1 − θ2|+ 3b(u+ b)|θ3 − θ4|

+ 3ab(θ1 + 2θ2 + θ3 + 2θ4) + a2|θ1 − θ2 − θ3 + θ4|
<
(
3b(u+ b) + 3bu+ 18ab+ 2a2

)
hM−3

< (6b(u+ a+ b) + 11ab)hM−3 < (6λ+ 0.11)bhM−2,

upon recalling that u+ a+ b < λM and a < 0.01M .
Next, we will show that n ̸= 0. Suppose that n = 0. Then we have

18.238a3b3xM−7 ≤ |Cx| = |θ| ≤ (6λ+ 0.11)bhM−2 ≤ 6.35bhM−2.

Combining this inequality with (4.21), we obtain
1.822b2M−1 < 18.238a3b3xM−7 ≤ 6.35b(mM)−1,

which is a contradiction under the hypotheses of the lemma. Thus n ≥ 2, and we
get

Cx = n− θ > 2− 6.35bhM−2 > 2− 0.0635m−1 > 1.992.

Combining this with the upper bound in (4.29), we get that
1.992 < Cx < 30a3b3xM−7,

and the desired conclusion follows. □
Next, we prove a version of Lemma 9. Note that in this case, the conditions

(4.30) and (4.31) are not always mutually exclusive—when M is close to H and
m ≤ 15, the two inequalities may hold simultaneously.

Lemma 12. Let λ ≤ 1.04, m ≥ 8, and suppose that mh ≤ H ≤ M . If 0 < a ≤ b
and u, u+a, u+b, u+a+b are elements of S3(M), then at least one of the conditions

a5b < 2λ9hx−1M6, (4.30)
or

a5b > (1
3
− 2λ2m−1)x−1M7, (4.31)

must hold.

Proof. As in the proof of the last lemma, let u1 = u, u2 = u + a, u3 = u + b, and
u4 = u+ a+ b, and recall (4.24). We rely on the identity

a5x

u3(u+ a)3
=

(6u2 − 3au+ a2)x

u3
− (6u2 + 15ua+ 10a2)x

(u+ a)3

= (6u2 − 3ua+ a2)f(u)− (6u2 + 15ua+ 10a2)f(u+ a) = n′ − θ′,
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with n′ ∈ Z, even and
θ′ = (6u2 − 3ua+ a2)θ1 − (6u2 + 15ua+ 10a2)θ2.

Using this relation and the analogous one for the pairs u+ b, u+a+ b, we find that
xa5

u3(u+ a)3
− xa5

(u+ b)3(u+ a+ b)3
= n+ θ, (4.32)

with n ∈ Z even and
|θ| < (6u2 + 6(u+ b)2 + 12au+ 15ab+ 11a2)hM−3

< (6(u+ a+ b)2 + 6(u+ a)2)hM−3 < 12λ2hM−1.

By the mean-value theorem,
(u+ b)3(u+ a+ b)3 − u3(u+ a)3 = 3bξ2(ξ + a)2(2ξ + a)

for some ξ ∈ (u, u+ b), so
6bu3(u+ a)2 < (u+ b)3(u+ a+ b)3 − u3(u+ a)3 < 6b(u+ b)2(u+ a+ b)3.

We use this to bound the left side of (4.32) and get that

n+ θ ≤ 6a5bx

u3(u+ a)3(u+ b)
< 6a5bxM−7.

Similarly, we have

n+ θ ≥ 6a5bx

(u+ a)(u+ b)3(u+ a+ b)3
> 6λ−7a5bxM−7.

Since M ≥ H, we have that |θ| < 12λ2m−1. So, it follows from the upper bound
on n+ θ that if b ≤ (1

3
− 2λ2m−1)a−5x−1M7, we have

n+ θ < 6a5bxM−7 < 2− |θ|;

hence, n < 2. On the other hand, if b ≥ 2λ9a−5hx−1M6, then using the lower
bound for n+ θ, we have that

n+ θ > 6λ−7a5bxM−7 ≥ 12λ2hH−1 > |θ|,
implying that n > 0. Since n > 0 and n < 2 cannot occur simultaneously when n
is even, the lemma follows. □

5. The Main Bounds on |Sk(M)|

Let
A2 = 1.3860x−1/3M4/3, A3 = (0.4− 0.05m−1)1/5x−1/5M6/5. (5.1)

In Section 3, we proved that b ≥ Ak whenever u, u+a, u+b are distinct elements of
Sk(M). Therefore, if u0, u1, . . . , us are the elements of Sk(M), listed in increasing
order, the set S ′

k(M) = {u0, u2, u4, . . . } has no gaps < Ak and satisfies
|Sk(M)| ≤ 2|S ′

k(M)|. (5.2)
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In this section, we use (5.2) and the lemmas in the last section to prove the
following results.

Proposition 1. Suppose h = 11x1/5 log x, let λ = 1.045 and x ≥ e116, and suppose
that 5.5h ≤ M ≤ x2/5. Then

S2(M) ≤ h(σ3(M) + σ4(M)), (5.3)
where

σ3(M) =
(
0.5298x1/5 + 0.3400x−1/5M

)
h−1 + 0.0308x1/15M−1/3, (5.4)

and

σ4(M) =

{
1.2105x−2/3M7/3 if M ≤ 5x1/4,

1.4182x−1/9M1/9 if M > 5x1/4.
(5.5)

Proposition 2. Suppose h = 5x1/7 log x, let λ = 1.04 and x ≥ e200, and suppose
that 11h ≤ M ≤ x2/7. Then

S3(M) ≤ h(σ3(M) + σ4(M)), (5.6)
where

σ3(M) =
(
0.4212x1/7 + 0.1900x−1/7M

)
h−1 + 0.0374x1/21M−1/3, (5.7)

and

σ4(M) =

{
0.9519x−2/3M11/3 if M ≤ 18x1/6,

5.1698x−1/15M1/15 if M > 18x1/6.
(5.8)

Remark 1. Notice that when x is relatively small, the conditions M ≤ 5x1/4 (in
Proposition 1) and M ≤ 18x1/6 (in Proposition 2) are impossible, and so only the
second condition will be used in the range of “small” values of x.

The proofs of these propositions use the set
Tk(M ; a) = {u : u, u+ a are consecutive elements of S ′

k(M)}
to bound |S ′

k(M)|. The starting point is the elementary identity

|S ′
k(M)| = 1 +

∞∑
a=1

|Tk(M ; a)| = 1 +
∑
a≥Ak

|Tk(M ; a)|, (5.9)

which is a direct consequence of the definition of Tk(M ; a). Further, for any B ≥ Ak,
we have ∑

a≥B

a|Tk(M ; a)| ≤
∑
a≥Ak

a|Tk(M ; a)| ≤ (λ− 1)M + 1,

so ∑
a≥B

|Tk(M ; a)| ≤ (λ− 1)MB−1 +B−1.
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Applying this inequality to the right side of (5.9), we find that, for any parameter
B ≥ 2,

|S ′
k(M)| ≤ 1.5 + (λ− 1)MB−1 +

∑
Ak≤a<B

|Tk(M ; a)|. (5.10)

5.1. Proof of Proposition 1. In this proof, we write A for the quantity A2 defined
in (5.1), and we select

B = δx−1/5M, δ = 0.17, (5.11)
in the imminent application of (5.10). We fix an integer a, with A ≤ a ≤ B.
If u0, u1, . . . , ut are the elements of T2(M ; a), listed in increasing order, the set
T ′(M) = {u0, u2, u4, . . . } contains only elements of T2(M ; a) such that if u, u+ b ∈
T ′(M), then b ≥ 2a. Clearly, |T2(M ; a)| ≤ 2|T ′(M)|.

Let I be a subinterval of (M,λM ] of length
|I| = (0.5− λm−1)a−3x−1M5,

and let u, u+ b be two elements of T ′(M)∩ I. Since b ≥ 2a, we can apply Lemma 9
to show that b must satisfy (4.5). Taking u and u+ b to be the smallest and largest
elements of T ′(M) ∩ I respectively, we can use this bound on b to deduce that the
set T ′(M) ∩ I is contained in an interval of length ≤ λ6a−3hx−1M4. Furthermore,
by (4.1), we have that

b ≥ 0.8706a−1/3x−1/3M5/3.

Combining these two observations we find that

|T ′(M) ∩ I| ≤ λ6a−3hx−1M4

0.8706a−1/3x−1/3M5/3
+ 1 < 1.4959a−8/3hx−2/3M7/3 + 1. (5.12)

Since we need at most
(λ− 1)M

(0.5− λm−1)a−3x−1M5
+ 1 < 0.1452a3xM−4 + 1 (5.13)

intervals of length |I| to cover (M,λM ], we conclude that

|T ′(M)| ≤
(
0.1452a3xM−4 + 1

) (
1.4959a−8/3hx−2/3M7/3 + 1

)
< 0.2173a1/3hx1/3M−5/3 + 0.1452a3xM−4 + 1.4959a−8/3hx−2/3M7/3 + 1.

Thus,
|T2(M ; a)| < 0.4346a1/3hx1/3M−5/3 + 0.2904a3xM−4

+2.9918a−8/3hx−2/3M7/3 + 2. (5.14)

Next, we use (5.14) to bound the right side of (5.10). With our choice of param-
eters, (5.10) gives

S ′
2(M) ≤ 1.5 + 0.045δ−1x1/5 +

∑
A≤a<B

|T2(M ; a)|. (5.15)
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Thus, we need to sum each of the four terms on the right side of (5.14) over
a ∈ [A,B). Recalling the inequality∑

k≤K

ks <
(K + 1)s+1

s+ 1
(s > 0),

and noting that B = δMx−1/5 ≥ 5.5hδx−1/5 > 10.285 log x > 1193, we find that∑
2≤a≤B
a even

as <
(B + 2)s+1

2(s+ 1)
<

(1.002B)s+1

2(s+ 1)
. (5.16)

Hence,

0.4346hx1/3M−5/3
∑

A≤a<B
a even

a1/3 <
0.4346 · (1.002B)4/3

8/3
hx1/3M−5/3

< 0.0154hx1/15M−1/3, (5.17)

and

0.2904xM−4
∑

A≤a<B
a even

a3 <
0.2904 · (1.002B)4

8
xM−4 < 0.00004x1/5. (5.18)

Combining (5.11), (5.14), (5.15), (5.17), and (5.18), we conclude that

S ′
2(M) ≤ hσ′

3(M) + 2.9918hx−2/3M7/3
∑

A≤a<B
a even

a−8/3, (5.19)

where

σ′
3(M) =

(
0.2649x1/5 + 0.17x−1/5M

)
h−1 + 0.0154x1/15M−1/3. (5.20)

We estimate the sum on the right side of (5.19) in different ways, depending on
the size of M . When M ≤ 5x1/4, we use that∑

A≤a<B
a even

a−8/3 <
ζ(8/3)

28/3
< 0.2023. (5.21)

On the other hand, when M > 5x1/4, we have A > 1.386 · 54/3 > 11.8501, so∑
A≤a<B
a even

a−8/3 <
3

5 · 28/3

(
A

2
− 1

)−5/3

< 0.4083A−5/3 < 0.237x5/9M−20/9. (5.22)

The proposition follows from (5.2) and (5.19)–(5.22). □
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5.2. Proof of Proposition 2. Similarly to the proof of Proposition 1, we write
A for the quantity A3 defined in (5.1), and we select

B = δx−1/7M, δ = 0.19, (5.23)

in the application of (5.10). We now fix an integer a, with A ≤ a ≤ B. By
Lemma 12, if we consider an interval I of length

|I| ≤ (1
3
− 2λ2m−1)x−1M7,

we must have b < 2λ9ha−5x−1M6 for any elements u, u + b ∈ T3(M ; a) ∩ I. Then
we can use (4.23) to get

|T3(M ; a) ∩ I| ≤ 2λ9ha−5x−1M6

(0.0664)1/3a−1x−1/3M7/3
+ 1

< 7.0298a−4hx−2/3M11/3 + 1.

Since we need at most
(λ− 1)M

(1
3
− 2λ2m−1)x−1M7a−5x−1M7

+ 1 < 0.2929a5xM−6 + 1

intervals of length |I| to cover (M,λM ], we conclude that

|T3(M ; a)| ≤ (0.2929a5xM−6 + 1)(7.0298a−4hx−2/3M11/3 + 1)

≤ 2.0591ahx1/3M−7/3 + 0.2929a5xM−6 + 7.0298a−4hx−2/3M11/3 + 1.
(5.24)

Next, we use this to bound the right side of (5.10). With our choice of parameters,
(5.10) yields

S ′
3(M) ≤ 1.5 + 0.04δ−1x1/7 +

∑
A≤a<B
a even

|T3(M ; a)|. (5.25)

To sum each of the four terms on the right side of (5.24) over a ∈ [A,B), we recall
(5.16) and note that the constant 1.002 in that inequality can be reduced to 1.001
in the present context, since B ≥ 11δhx−1/7 > 2090. We find that

2.0591hx1/3M−7/3
∑

A≤a<B
a even

a <
2.0591(1.001B)2

4
x1/3M−7/3

< 0.0187hx1/21M−1/3, (5.26)

and

0.2929xM−6
∑

A≤a<B
a even

a5 <
0.2929 · (1.001B)6

12
xM−6 < 0.00001x1/7. (5.27)
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Combining (5.23)–(5.27), we conclude that

S ′
3(M) ≤ hσ′

3(M) + 7.0298hx−2/3M11/3
∑

A≤a<B
a even

a−4, (5.28)

where
σ′
3(M) =

(
0.2106x1/7 + 0.095x−1/7M

)
h−1 + 0.0187x1/21M−1/3. (5.29)

We estimate the sum on the right side of (5.28) in different ways, depending on
the size of M . When M ≤ 18x1/6, we use that∑

A≤a<B
a even

a−4 <
ζ(4)

16
=

π4

1440
< 0.0677. (5.30)

On the other hand, when M > 18x1/6, we have A > 0.8306 · 186/5 > 26.6513, so∑
A≤a<B
a even

a−4 <
1

3 · 24

(
A

2
− 1

)−3

< 0.2107A−3 < 0.3677x3/5M−18/5. (5.31)

The proposition follows from (5.2) and (5.28)–(5.31). □

6. Proof of Theorem 1

The proof of the theorem uses different approaches for different values of x. As
we stated in the introduction, the work in [23] establishes our result (and much
more) for x ≤ e41. In Section 6.1, we focus on large x and show that for x ≥ e116,
Theorem 1 follows from Proposition 1. To complete the proof, in Section 6.2,
we prove two asymptotically weaker variants, which are, however, stronger than
the theorem for small x. Those alternative results establish Theorem 1 in the
intermediate range e41 ≤ x ≤ e116.

6.1. Large x. Let x ≥ e116 and set H = 5.5h in (2.2) and (2.11). First, we use
Proposition 1 and Lemma 2 to bound S2(H, x2/5).

Suppose first that H ≤ 5x1/4, (in this case we can assume x ≥ e150) we split
S2(H, x2/5) in two pieces to account for the different cases in (5.5). When we apply
Lemma 2 to the bound (5.3) for M ∈ [H, 5x1/4], we find that

S2(H, 5x1/4) < h

(
1.2105 · 57/3x−1/12

1− 1.045−7/3
+

0.0308x1/15H−1/3

1− 1.045−1/3

)
+

1.7x1/20

1− 1.045−1

+ 0.5298x1/5

(
log
(
5x1/4/H

)
log(1.045)

+ 1

)

< 0.1034h+ 0.0001x1/5 + 0.5298x1/5

(
log x

20 log(1.045)
− log(12.1 log x)

log(1.045)
+ 1

)
< 0.1034h+ 0.6019x1/5 log x− 89.7886x1/5 < 0.1582h.
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Similarly, when we apply Lemma 2 to (5.3) for M ∈ [5x1/4, x2/5], we get

S2(5x
1/4, x2/5) < h

(
1.4182x−1/15

1− 1.045−1/9
+

0.0308 · 5−1/3x−1/60

1− 1.045−1/3

)
+

0.34x1/5

1− 1.045−1

+ 0.5298x1/5

(
3 log x

20 log(1.045)
− log 5

log(1.045)
+ 1

)
< 0.1148h+ 1.8055x1/5 log x− 10.9463x1/5 < 0.2790h.

Hence,
S2(H, x2/5) < 0.1582h+ 0.2790h = 0.4372h. (6.1)

Next, we consider the case H > 5x1/4 (which implies that x ≤ e151). In this
case we need only consider the latter case of Proposition 1 for M in the full range
(H, x2/5]. Applying Lemma 2 in this situation gives

S2(H, x2/5) < h

(
1.4182x−1/15

1− 1.045−1/9
+

0.0308x1/15H−1/3

1− 1.045−1/3

)
+

0.34x1/5

1− 1.045−1

+ 0.5298x1/5

(
log x

5 log(1.045)
− log(60.5 log x)

log(1.045)
+ 1

)
< 0.2378h+ 2.4073x1/5 log x− 98.1700x1/5 < 0.3976h, (6.2)

on noting that 98.170x1/5 > 0.059h when x ≤ e151.
To complete the estimation of S2(H,

√
2x), we apply Lemma 2 to the bound in

Corollary 1 for M ∈ [x2/5,
√
2x]. This yields

S2(x
2/5,

√
2x) <

0.0901x1/5

1− 1.045−2
+

log x

10 log(1.045)
+

0.5 log 2

log(1.045)
+ 1 < 0.0009h. (6.3)

Together, (6.1)–(6.3) establish (2.11) with

σ3 =

{
0.4381 if H ≤ 5x1/4,

0.3985 if H > 5x1/4,

for all x ≥ e116. Taking J = 120 in (2.5), we have σ0(h, 120) ≤ −0.0595 in the same
range. Furthermore, for all x ≥ e116, we have σ2(h, 5.5) < 0.1797, and for x ≥ e150,
we have σ2(h, 5.5) < 0.1461. Thus,

σ0(h, 120) + σ1 + σ2(h, 5.5) + σ3(h, 5.5) <

{
0.9770 if H ≤ 5x1/4,

0.9710 if H > 5x1/4,

which establishes (2.12), and therefore the theorem, for x ≥ e116.
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6.2. Intermediate x. Suppose that x ≥ e41. We consider h = 5x1/4 and choose
λ = 1.025, J = 19 and H = 1.75h. With these choices, we apply Lemma 2 to the
result of Corollary 3 to obtain

S2(H,
√
2x) <

1.4430 · (0.025)x1/3H−1/3

1− 1.025−1/3
+ 2

(
log
(√

2x
)
− logH

log(1.025)
+ 1

)

< 0.4272h+
log x

2 log(1.025)
+

log 2− 2 log(8.75/1.025)

log(1.025)
< 0.4331h.

That is, (2.12) holds with σ3(h, 1.75) = 0.4331. Moreover, when h = 5x1/4 and
x ≥ e41, we have

σ0(h, 19) ≤ −0.0543, σ2(h, 1.75) ≤ 0.158.

Thus, when h = 5x1/4 and x ≥ e41, we have

σ0(h, 19) + σ1 + σ2(h, 1.75) + σ3(h, 1.75) < 0.9891.

Together with the computations of [23], this proves the following result.

Proposition 3. For any x ≥ 2, the interval (x, x + 5x1/4] contains a squarefree
integer.

Moreover, an identical calculation for x ≥ e109 with h = 3.8x1/4, H = 4.5h,
λ = 1.0001, and J = 100 yields

σ0(h, 100) + σ1 + σ2(h, 4.5) + σ3(h, 4.5)

< −0.0594 + 0.4523 + 0.1571 + 0.4423 = 0.9924,

which yields the following alternative.

Proposition 4. For any x ≥ e109, the interval (x, x+3.8x1/4] contains a squarefree
integer.

Since 5x1/4 ≤ 11x1/5 log x for x ≤ e109.7, Proposition 3 implies Theorem 1 for x ≤
e109. Finally, since 3.8x1/4 ≤ 11x1/5 log x for x ≤ e116.3, Proposition 4 establishes
Theorem 1 when e109 ≤ x ≤ e116. This completes the proof of the theorem.

7. Proof of Theorem 2

As stated in the introduction, the theorem can be checked by brute force for
x ≤ e41. Thus, we focus on proving it for x ≥ e41.

7.1. Large x. Let x ≥ e200 and set H = 11h in (2.2) and (2.11). We will use
Proposition 2 and Lemma 2 to bound S3(H, x2/7).

Suppose first that H ≤ 18x1/6, (in this case we can assume x ≥ e284) we again
split S3(H, x2/7) according to the two cases in (5.8). When we apply Lemma 2 to
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the bound (5.6) for M ∈ [H, 18x1/6], we find that

S3(H, 18x1/6) < h

(
0.9519 · 1811/3x−1/18

1− 1.04−11/3
+

0.0374x1/21H−1/3

1− 1.04−1/3

)
+

3.8x1/42

1− 1.04−1

+ 0.4212x1/7

(
log x

42 log(1.04)
−

log(55
18
log x)

log(1.04)
+ 1

)
< 0.1552h+ 0.2557x1/7 log x− 72.2396x1/7 < 0.2064h.

Similarly, when we apply Lemma 2 to (5.6) for M ∈ [18x1/6, x2/7], we get

S3(18x
1/6, x2/7) < h

(
5.1698x−1/21

1− 1.04−1/15
+

0.0374 · 18−1/3x−1/126

1− 1.04−1/3

)
+

0.19x1/7

1− 1.04−1

+ 0.4212x1/7

(
5 log x

42 log(1.04)
− log 18

log(1.04)
+ 1

)
< 0.1180h+ 1.2785x1/7 log x− 25.6791x1/7 < 0.3737h.

Hence,
S3(H, x2/7) < 0.2064h+ 0.3737h = 0.5801h. (7.1)

Next, we consider the case H > 18x1/6, noting that we must have x ≤ e285. Since
we need only use the latter case of Proposition 2 for M in the full range (H, x2/7]
we find that

S3(H, x2/7) < h

(
5.1698x−1/21

1− 1.04−1/15
+

0.0374x1/21H−1/3

1− 1.04−1/3

)
+

0.19x1/7

1− 1.04−1

+ 0.4212x1/7

(
log x

7 log(1.04)
− log(55 log x)

log(1.04)
+ 1

)
< 0.2742h+ 1.5342x1/7 log x− 94.5742x1/7 < 0.5148h, (7.2)

on noting that 94.5742x1/7 > 0.0663h when x ≤ e285.
To complete the estimation of S3(H, 3

√
2x), we apply Lemma 2 to the bound in

Corollary 1 for M ∈ [x2/7, 3
√
2x]. This yields

|S3(x
2/7,

3
√
2x)| ≤ 0.1202x1/7

1− 1.04−3
+

log x

21 log(1.04)
+

log 2

3 log(1.04)
+ 1 < 0.0011h. (7.3)

Combining (7.1)–(7.3), we obtain (2.11) with

σ3 =

{
0.5812 if H ≤ 18x1/6,

0.5159 if H > 18x1/6,

for all x ≥ e200. Taking J = 100 in (2.5), we have σ0(h, 100) ≤ −0.0066 in the
same range. Furthermore, we have

σ2(h, 11) <

{
0.2256 if x ≥ e284,

0.3020 if x ≥ e200.
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Thus,

σ0(h, 100) + σ1 + σ2(h, 11) + σ3(h, 11) <

{
0.9750 if H ≤ 18x1/6,

0.9861 if H > 18x1/6,

which establishes (2.12), and therefore the theorem, for x ≥ e200.

7.2. Intermediate x. Suppose that x ≥ e41. We take h = 2x1/5, H = 2.7h, and
λ = 1.06, and apply Lemma 2 to the result of Corollary 2. We obtain

S3(H,
3
√
2x) ≤ 1.2604(0.06)(xH−2)1/3

1− 1.06−2/3
+

log 3
√
2x− logH

log(1.06)
+ 1

< 0.3225h+
2 log x

15 log(1.06)
−

log(5.4)− 1
3
log 2

log(1.06)
+ 1 < 0.3354h.

That is, (2.11) holds with σ3(h, 2.7) = 0.3354. As σ2(h, 2.7) ≤ 0.3146, and
σ0(h, 6) < −0.0047 we get

σ0(h, 6) + σ1 + σ2(h, 2.7) + σ3(h, 2.7) < 0.8201.

This establishes that the interval (x, x + 2x1/5] contains a cubefree integer for all
x ≥ e41. Moreover, recalling the results of [23], we obtain the following proposition.

Proposition 5. For any x ≥ 2, the interval (x, x + 2x1/5] contains a cubefree
integer.

Since 2x1/5 ≤ 5x1/7 log x for x ≤ e95.8 the main result follows from Proposition 5
for x ≤ e95. Next, we prove that h = 10x1/6 is admissible when x ≥ e95. With this
choice of h, we let H = 4h and λ = 1.03. An application of Lemma 2 to the bound
of Corollary 4 yields

S3(H,
3
√
2x) ≤ 0.0726(xH−1)1/5

1− 1.03−1/5
+

2 log x

6 log(1.03)
< 0.5891h,

or σ3(h, 4) = 0.5891 in (2.11). Since σ0(h, 20) < −0.0066 and σ2(h, 4) < 0.2207 for
x ≥ e95, we deduce that

σ0(h, 20) + σ1 + σ2(h, 4) + σ3(h, 4) < 0.9780.

Since 10x1/6 ≤ 5x1/7 log x in the range x ≤ e191.6, this establishes the theorem for
x ≤ e191.

By the same method we show that h = 8.5x1/6 is admissible when x ≥ e191.
With this choice of h, we let H = 5h and λ = 1.01. In this case, applying Lemma 2
to the bound of Corollary 4 yields

S3(H,
3
√
2x) ≤ 0.0242(xH−1)1/5

1− 1.01−1/5
+

2 log x

6 log(1.01)
< 0.6767h,
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or σ3(h, 5) = 0.6767 in (2.11). Since σ0(h, 20) < −0.0066 and σ2(h, 5) < 0.1465 for
x ≥ e191, we deduce that

σ0(h, 20) + σ1 + σ2(h, 5) + σ3(h, 5) < 0.9914.

Since 8.5x1/6 ≤ 5x1/7 log x in the range x ≤ e200.3, this completes the proof of
Theorem 2.

As we close this section, we take a moment to record the following result, which
we just proved.

Proposition 6. For any x ≥ e95, the interval (x, x + 10x1/6] contains a cubefree
integer, and for any x ≥ e191, the interval (x, x+8.5x1/6] contains a cubefree integer.

8. Asymptotic Results and Final Comments

We conclude by noting a few of the explicit bounds that can be obtained by
these methods if one no longer requires the bounds to be admissible for all values
of x ≥ 2, allowing instead results valid for sufficiently large values of x.

Some of the possible results that can be obtained by tweaking the parameters
used in the proof of Theorem 1 are given in the statement of Theorem 3. To prove
any of those results, we reset the parameters m, J, λ, δ that appear in the proofs of
Proposition 1 and Theorem 1 and then update the various constants. (When x is
as large as in Theorem 3, the inequality H ≤ 5x1/4 always holds, so only the first
case in the proof of Theorem 1 can occur.) To establish the claims of Theorem 3,
we always select J = 100, λ = 1.02, and m =

√
log x0, where x0 is the lower bound

on x in each result; we only vary the choice of δ. For example, when h = 5x1/5 log x,
x ≥ e400 (hence, m = 20), and δ = 0.3, we have

σ0(h, 100) + σ1 + σ2(h,m) + σ3(h,m) < 0.9811.

For h = 2x1/5 log x and x ≥ e1800, the choice δ = 0.6 yields an upper bound of
0.9857; and for h = x1/5 log x and x ≥ e500 000, δ = 0.87 gives a bound of 0.9981.

We obtain Theorem 4 by making similar adjustments to the proofs of Proposi-
tion 2 and Theorem 2. In this case, we set λ = 1.002, J = 20, and m =

√
log x0,

where x0 is the lower bound on x, and again vary the choice of δ. For h = 2x1/7 log x
and x ≥ e550, we set δ = 0.38 to get a bound of 0.9914. For h = x1/7 log x
and x ≥ e2300, we set δ = 0.66, resulting in a bound of 0.9919. Finally, for
h = 1

2
x1/7 log x and x ≥ e75 000, we set δ = 0.90 and get a bound of 0.9977.

Remark 2. Looking back at the proofs of our theorems, one can see that the value
of h in our theorems is of the form h(x) = bkx

1/(2k+1) log x, with bk an upper bound
for a rather complicated bounded function Bk(x;m, J, λ, δ), which is decreasing in
the variable x. Once x is sufficiently large, the decay in x appears to overwhelm
the effect of the other parameters. On the other hand, to claim a specific value
of bk for all x ≥ x0, one generally needs to find acceptable choice of the other
parameters to ensure that (2.12) holds. It seems that if one were to make the
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function Bk(x;m, J, λ, δ) fully explicit, one may even be able to identify a four-
dimensional neighborhood of the chosen values of m, J, λ, δ such that all the choices
of the parameters in that neighborhood are acceptable.
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